CALCIUM AND IRON BINDING PEPTIDES PRODUCTION BY Lactococcus lactis subsp. cremoris NCFB 712

  • C. Figueroa-Hernández Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
  • A. Cruz-Guerrero Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
  • G. Rodríguez-Serrano Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
  • L. Gómez-Ruíz Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
  • M. García-Garibay Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
  • J. Jiménez-Guzmán Departamento de Biotecnología Universidad Autónoma Metropolitana, Iztapalapa
Keywords: bioactive peptides, Lactococcus lactis, iron-binding, calcium-binding

Abstract

Lactococcus lactis is a bacteria with a high potential of bioactive peptide production. One of the most important activities of these peptides is metal chelating activity especially of calcium, iron and zinc. The aim of this work was evaluated the effect of pH on calcium and iron chelating peptides production in fermentations by Lactoccocus lactis subsp. cremoris NCFB 712. It was observed that during fermentation with pH control, the production of calcium binding peptides (0.28 mmol Ca2+ mg−1 protein) was improved, with respect to fermentation without pH control (0.23 mmol Ca2+ mg−1 protein). There is a correlation between proteolytic activity and calcium-binding activity by the supernatants of fermentations with or without pH control. As for the iron-binding activity was observed an increase in the fermentation with pH control with respect to fermentation without control, which was maintained as the initial binding activity characteristic of the milk proteins. It was found that the molecular weights of some of the peptides generated match with the sequence reported molecular weights and calcium and iron binding.

References

Adler, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry 27, 1256- 1261.

Aimutis, W. (2004). Bioactive peptides of milk proteins with particular focus on anticariogenesis. Journal of Nutrition 134, 989- 995.

Bouglé, D. y Bouhallab, S. (2006). Mineral-Binding proteins and peptides and bioavailability of trace elements. En: Nutraceutical Proteins and Peptides in Health and Disease. Y. Mine y F Shadihi, eds., Pp. 29-40 Taylor y Francis. USA.

Brown M. y Rydvist, B. (1981). Arsenazo IIICa2+. Effect of pH, ionic strength and arsenazo III concentration on equilibrium binding evaluated with Ca2+ ion-sensitive electrodes and absorbance measurements. Biophysical Journal 36, 117-137.

Cross, K., Huq, L., Palamara, J., Perich, J. y Reynolds, E. (2005). Physicochemical characterization of casein p’hosphopeptideamorphous calcium phosphate nanocomplexes. The Journal of Biological Chemistry 280, 15362-15369.

Cross, K., Huq, L., Bicknell, W. y Reynolds, E. (2001). Cation-dependent structural features of beta-casein-(1-25). Biochemical Journal 356, 277-286.

Dimitrov, Z. (2009). Characterization of bioactive peptides with calcium-binding activity released by specially designed cheese starter. Biotechnology & Biotechnology EQ, 927-930.

Farvin, K., Baron, C., Nielsen, N. y Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry 123, 1081- 1089.

Figueroa-Gonzalez, I., Henández-Sánchez, H., Rodríguez-Serrano, G., Gómez-Ruiz L., García-Garibay M. y Cruz-Guerrero A. (2010). Antimicrobial effect of Lactobacillus casei Shirota co-cultivated with Escherichia coli UAM0403. Revista Mexicana de Ingeniería Química 9,11-16.

Figueroa-Hernández, C. (2007) Utilización del sistema proteolítico de Lactococcus lactis para la generación de péptidos potencialmente bioactivos. Tesis de Maestría en Biotecnología, Universidad Autónoma Metropolitana- Iztapalapa, México.

González-Olivarez, L., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L. y García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. ´ Revista Mexicana de Ingeniería Química 10,179-188.

Hayes, M., Ross, P., Fitzgerald, G. y Stanton, C. (2007). Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part I: Overview. Biotechnology Journal 2, 426-434.

Heaney, R. (2000). Calcium, dairy products and osteoporosis. Journal of the American College of Nutrition 19, 83S-99S.

Hintze, J. (2001). NCSS Quick start & self-help manual. Disponible en: www.ncss.com/pdf/manuals/quickstart.pdf. Accesado: 11 agosto 2011.

Hwang, J., Shue, Y. y Chang, H. (2001). Antioxidant activity of roasted and defatted peanut kernels. Food Research International 34, 639-647.

Kim, S. y Lim, J. (2004). Calcium-binding peptides derived from tryptic hydrolysates of cheese whey protein. Asian-Australasian Journal of Animal Science 17, 1459-1464.

Kitts, D. (2006). Calcium binding Peptides. En: Nutraceutical proteins and peptides in health and disease (Y. Mine y F Shadihi, eds), Pp 65- 78 Taylor y Francis. USA.

Kunji, E., Mierau, I., Poolman, B., Konings, W., Venema, G. y Kok, J. (1996). The proteolytic system of lactic acid bacteria. Antonie Van Leeuwenhoek 70, 187-227.

Liu, J., Chen, M. y Lin, C. (2005). Antimutagenic and antioxidant properties of milk-kefir and soy milk- kefir. Journal of Agricultural and Food Chemistry 53, 2467-2474.

Lowry, O., Rosebrough, N., Farr, A. y Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265-275.

Meisel, H. y Fitzgerald, R. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical Design 9, 1289-1295.

Pihlanto, A., Virtanen, T. y Korhonen, H. (2010). Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. International Dairy Journal 20, 3-10.

Vasiljevic, T, y Shah, N. (2008). Probiotics- from Metchnikoff to bioactives. International Dairy Journal 18, 714-728.

Vegarud, G., Langsrud, T. y Svenning, C. (2000).

Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition 84, S91-S98.

Zidane, F., Matéos, A., Cakir-Kiefer, C., Miclo, L. y Corbier, C. (2011). Binding of divalent metals ions to 1-25 β-caseinophosphopeptide: an isothermical titration calorimetry study. Food Chemistry 132, 391-398.
Published
2020-04-14
How to Cite
Figueroa-Hernández, C., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruíz, L., García-Garibay, M., & Jiménez-Guzmán, J. (2020). CALCIUM AND IRON BINDING PEPTIDES PRODUCTION BY Lactococcus lactis subsp. cremoris NCFB 712. Revista Mexicana De Ingeniería Química, 11(2), 259-267. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1559
Section
Biotechnology