• S. Baz-Rodríguez Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa
  • A. Aguilar-Corona Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo
  • A. Soria Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana – Iztapalapa
Keywords: single bubble motion, terminal velocity equation, oscillatory bubble path, pure liquids


An equation to predict the terminal rise velocity of single bubbles in stagnant Newtonian liquids is proposed. The formulation combines a force balance obtained from the boundary layer theory for non-distorted bubbles and an analytic equation coming from a mechanic energy balance. Without including geometric parameters, which are difficult to assess, it is assumed that the weighting of dominant forces is enough to adequately predict the terminal velocity in both the intermediate and inertial motion regimes. The proposed equation shows good agreement with experimental data from bubbles rising in pure liquids. Moreover, for bubbles rising in clean water, the effect of helical trajectories was estimated from experimental data trends and included in the formulation as a correction factor for the terminal velocity.


Aybers, N. M. and Tapucu, A. (1969). The Motion of gas bubbles rising through stagnant liquid. Heat and Mass Transfer 2, 118-128.

Blandín-Arrieta, J. (1997). Visualization and Description of Bubble Dynamics (in Spanish). Chemical Engineering MSc. Thesis, Universidad Autónoma Metropolitana - Iztapalapa, Mexico.

Bozzano, G. and Dente, M. (2001). Shape and terminal velocity of single bubble motion: a novel approach. Computers and Chemical Engineering 25, 571-576.

Brucker, C. (1999). Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Physics of Fluids 11, 1781-1796.

Cai, Z., Bao, Y. and Gao, Z. (2010). Hydrodynamic behavior of a single bubble rising in viscous liquids. Chinese Journal of Chemical Engineering 18, 923-930.

Celata, G. P., D’Annibale, F., Di Marco, P., Memoli, G. and Tomiyama, A. (2007). Measurements of rising velocity of a small bubble in a stagnant fluid in one and two component systems. Experimental Thermal and Fluid Science 31, 609-623.

de Vries, A. W. G., Biesheuvel, A. and van Wijngaarden, L. (2002). Notes on the path and wake of a gas bubble rising in pure water. International Journal of Multiphase Flow 28, 1823-1835.

Duangsuwan, W., Tuzun, U. and Sermon, P. A. (2011). The dynamics of single air bubbles and alcohol drops in sunflower oil at various temperatures. AIChE Journal 57, 897-910.

Duineveld, P. C. (1995). The rise velocity and shape of bubbles in pure water at high Reynolds number. Journal of Fluid Mechanics 292, 325- 332.

Ellingsen, K. and Risso, F. (2001). On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquid induced velocity. Journal of Fluid Mechanics 440, 235-268.

Fan, L.-S. and Tsuchiya, K. (1990). Bubble Wake Dynamics in Liquids and Liquid Solid Suspensions. Butterworth-Heinemann Series in Chemical Engineering.

Ford, B. and Loth, E. (1998). Forces on ellipsoidal bubbles in a turbulent shear layer. Physics of Fluids 10, 178-188.

Haberman, W. L. and Morton, R. K. (1953). An experimental investigation of the drag and shape of air bubbles rising in various liquids. David Taylor Model Basin Report 802, US Department of the Navy, Washington, DC.

Hadamard, J. S. (1911). Movement permanent lent d’une sphere liquide et visqueuse dans ` un liquide visqueux. Comptes Rendus Hebdomadaires des Seances de V Academie des Sciences (Paris) 152, 1735-1738.

Hartunian, R. A. and Sears, W. R. (1957). On instability of small gas bubbles moving uniformly in various liquids. Journal of Fluid Mechanics 3, 27-47.

Jamialahmadi, M., Branch, C. and MullerSteinhagen, H. (1994). Terminal bubble rise velocity in liquids. Chemical Engineering Research and Design 72, 119-122.

Kulkarni, A. A. and Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas-liquid systems: A review. Industrial and Engineering Chemistry Research 44, 5873-5931.

Lehrer, I. H. (1976). A rational terminal velocity equation for bubbles and drops at intermediate and high Reynolds numbers. Journal of Chemical Engineering of Japan 9, 237-240.

Leifer, I., Patro, R. K. and Bowyer, P. (2000). A study on the temperature variation of rise velocity for large clean bubbles. Journal of Atmospheric and Oceanic Technology 17, 1392-1402.

Levich, V. G. (1962). Physicochemical Hydrodynamics. Prentice Hall Englewood Clift.

Loth, E. (2010). Particles, Drops and Bubbles: Fluid Dynamics and Numerical Methods. University of Illinois at Urbana-Champaign & University of Virginia. Book Draft for Cambridge University Press. Available on (May 7, 2010): http://www.ae.illinois.edu/ ˜loth/CUP/Loth.htm.

Marks, C. H. (1973). Measurements of the terminal velocity of bubbles rising in a chain. Journal of Fluids Engineering 9, 17-22.

Mendelson, H. D. (1967). The Prediction of Bubble Terminal Velocities from Wave Theory. AIChE Journal 13, 250-253.

Moore, D. W. (1963). The boundary layer on a spherical gas bubble. Journal of Fluid Mechanics 16, 161-176.

Moore, D. W. (1965). The velocity of distorted gas bubbles in a liquid of small viscosity. Journal of Fluid Mechanics 23, 749-766.

Mougin, G. and Magnaudet, J. (2006). Wake-induced forces and torques on a zigzagging/spiralling bubble. Journal of Fluid Mechanics 567, 185-194.

Okawa, T., Tanaka, T., Kataoka, I. and Mori, M. (2003). Temperature effect on single bubble rise characteristics in stagnant distilled water. International Journal of Heat and Mass Transfer 46, 903-913.

Okazaki, S. (1964). The Velocity of Ascending air bubbles in aqueous solutions of a surface active substance and the life of the bubble on the same solution. Bulletin of the Chemical Society of Japan 37, 144-150.

Peebles, F. N. and Garber, H. J. (1953). Studies on the motion of gas bubbles in liquids. Chemical Engineering Progress 49, 88-97.

Rodrigue, D. (2001). Generalized correlation for bubble motion. AIChE Journal 47, 39-44.

Ruzicka, M. C., Zahradnik, J., Drahos, J. and Thomas, N. H. (2001). Homogeneusheterogeneous regime transition in bubble columns. Chemical Engineering Science 56, 4609-4626.

Shah, AND. T., Kelkar, B. G., Godbole, S. P., Deckwer, W-D., 1982. Design parameters estimation for bubble column reactors. AIChE Journal 28, 353-379.

Shew, W. L. and Pinton, J.-F. (2006a). Dynamical model of bubble path instability. Physical Review Letters 97(144508), 1-4.

Shew, W. L. and Pinton, J.-F. (2006b). Viscoelastic effects on the dynamics of a rising bubble. Journal of Statistical Mechanics: Theory and Experiment P01009.

Sanada, T., Sugihara, K., Shirota, M. and Watanabe, M. (2008). Motion and drag of a single bubble in super-purified water. Fluid Dynamics Research 40, 534-545.

Talaia, M. A. R. (2007). Terminal velocity of a bubble rise in a liquid column. Proceedings of the World Academy of Science, Engineering and Technology 22, 264-268.

Tomiyama, A., Celata, G. P., Hosokawa, S. and Yoshida, S. (2002). Terminal velocity of single bubbles in surface tension force dominant regime. International Journal of Multiphase Flow 28, 1497-1519.

Veldhuis, C., Biesheuvel, A. and van Wijngaarden, L. (2008). Shape oscillations on bubbles rising in clean and tap water. Physics of Fluids 20(040705), 1-12.

Wellek, R. M., Agrawal, A. K. and Skelland, A. H. P. (1966). Shape of liquid drops moving in liquid media. AIChE Journal 12, 854-862.

Wu, M. and Gharib, W. (2002). Experimental studies on the shape and path of small air bubbles rising in clean water. Physics of Fluids 14, L49-L52.

Zenit, R. and Magnaudet, J. (2008). Path instability of rising spheroidal air bubbles: A shape controlled process. Physics of Fluids 20(061702), 1-4.

Zudin, AND. B. (1995). Calculation of the rise velocity of large gas bubbles. Journal of Engineering Physics and Thermophysics 68, 10- 15.
How to Cite
Baz-Rodríguez, S., Aguilar-Corona, A., & Soria, A. (2020). RISING VELOCITY FOR SINGLE BUBBLES IN PURE LIQUIDS. Revista Mexicana De Ingeniería Química, 11(2), 269-278. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1560
Transport phenomena