PREDICTION OF HARDNESS PROFILES IN MEDIUM AND LOW CARBON STEEL JOMINY PROBES

  • E. López-Martínez
  • J.B. Hernández-Morales
  • G. Solorio-Díaz
  • H.J. Vergara-Hernández
  • O. Vázquez-Gómez
  • P. Garnica-González Instituto Tecnológico de Morelia
Keywords: Jominy end-quench test, mathematical model, inverse heat conduction problem, AISI 4140, AISI 1045, AISI 1080, finite difference method

Abstract

A mathematical model was formulated, coded and validated to predict the evolution of the thermal and microstructural fields in steel probes subjected to the Jominy end-quench test. The heat transfer boundary condition at the probe base was estimated by solving the inverse heat conduction problem (IHCP).The model was validated by comparing the thermal profiles measured in AISI 304 and AISI 4140 steel probes with the values calculated with the model. Once the mathematical model was validated, it was applied to predict, using empirical correlations based on the microstructural profile, the hardness profile along the length of AISI 4140, AISI 1045 and AISI 1080 steel probes. A good approximation was observed between the experimental and calculated hardness profiles.

References

Avrami M. (1939). Kinetics of Phase Change. I General Theory. Journal of Chemical Physics 7, 1103-1112.

Avrami M. (1940). Kinetics of phase change. II Transformation-Time Relations for Random Distribution of Nuclei. Journal of Chemical Physics 8, 212-224.

Beck J. V., Litkouhi B, y St. Clair Jr. C. R. (1982). Efficient Solution of the Nonlinear Inverse Heat Conduction Problem. Numerical Heat Transfer 5, 275-286.

Brooks C. R. (1996). Principles of Heat Treatment of Plain Carbon and Low Alloy Steels. ASM International, EUA.

C¸ akira M. y Özsoyb A. (2011). Investigation of the correlation between thermal properties and hardenability of Jominy bars quenched with airwater mixture for AISI 1050 steel. Materials and Design 32, 3099-3105.

Chen S. G., Weng C. I., y Lin J. (1999). Inverse estimation of transient temperature distribution in the end quenching test. Journal of Materials Processing Technology 86, 257-263.

Eshraghi Kakhki M., Kermanpur A., y Golozar M. A. (2009). Numerical Simulation of Continuous Cooling of a Low Alloy Steel to Predict Microstructure and Hardness. Modelling and Simulation in Materials Science and Engineering 17, 045007.

Hömberg D. (1996). A numerical simulation of the jominy end-quench test. Acta Materialia 41, 4375-4385.

Iyer J., Brimacombe J. K. y Hawbolt E. B. (1985). Prediction of the structure and mechanical properties of control cooled eutectoid steel rods. Pittsburgh: Mechanical Working y Steel Processing Conference XXII, pp. 47-58.

Le Masson P., Loulou T., Artioukhine E., Rogeon P., Carron D., y Quemener J. J. (2002). A numerical study for the estimation of a convection heat transfer coefficient during a metallurgical “Jominy end-quench” test. International Journal of Thermal Sciences 41, 517-527.

Li M. V., Niebuhr D. V., Meekisho L. y Atteridge D. G. (1998). A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions B 29, 661-670.

Karlekar B. V. y Desmons R. M. (1985). Transferencia de Calor. Editorial Interamericana, México.

Koistinen D. P. y Marburger R. E. (1959). A General Equation for Austenite - Martensite Transformation in Pure Carbon Steels. Acta Metallurgica 7, 59-60.

Kovaci´c M. (2009). Genetic Programming and Jominy Test Modeling. Materials and Manufacturing Processes 24, 806-808.

López E. (2005). Simulaci´on de la evolución microestructural en el ensayo Jominy. Tesis de Licenciatura en Ingeniería Química Metalúrgica, Universidad Nacional Autónoma de México, México.

Narazaki M., Kogawara M., Shirayori A. y Fuchizawa S.(1998). Accuracy of Evaluation Methods for Heat Transfer Coefficients in Quenching. En: Proceedings of the 18thConference of heat treating Symposium including the Lui Dai Memorial Symposium, (R. A. Wallis y H. W. Walton, eds.), Pp 509-517. ASM International, Ohio.

Smoljan B. (2006). Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft. Journal of Materials Processing Technology 175, 393-397.

Smoljan B., Rubesa D., Tomasi´c N., Hanza S. S., y Iljki´c D. (2007). An analysis of application of modified Jominy-test in simulation of cold work tool steels quenching. International Journal of Microstructure and Materials Properties 2, 24-34.

Smoljan B., Hanza S. S., Tomosi´c N. y Iljki´c D.(2007). Computer simulation of microstructure transformation in heat treatment processes. Journal of Achievements in Materials and Manufacturing Engineering 24, 275-282.

Zehtab Yazdi A., Sajjadi S. A., Zebarjad S. M. y Moosavi Nezhad S. M. (2008) Prediction of hardness at different points of Jominy specimen using quench factor analysis method. Journal of Materials Processing Technology 199, 124-129.
Published
2020-04-15
How to Cite
López-Martínez, E., Hernández-Morales, J., Solorio-Díaz, G., Vergara-Hernández, H., Vázquez-Gómez, O., & Garnica-González, P. (2020). PREDICTION OF HARDNESS PROFILES IN MEDIUM AND LOW CARBON STEEL JOMINY PROBES. Revista Mexicana De Ingeniería Química, 12(3), 609-619. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1563
Section
Materials

Most read articles by the same author(s)