THERMODYNAMIC ONE-ZONE MODEL WITH RELATIONS FOR COMBUSTION PROCESS FOR BIOGAS FUELED INTERNAL COMBUSTION ENGINES

  • J.L. Carrera-Escobedo
  • C.H. Guzmán-Valdivia
  • A. Ortiz-Rivera
  • O. Désiga-Orenday
  • M.A García-Ruíz
Keywords: engines, thermodynamic one-zone models, biogas, combustion, nitrogen oxide

Abstract

The thermodynamic one-zone models allow the calculation of the performance of internal combustion engine by means of a personal computer. These models use equations known as burning laws to calculate the combustion process evolution and have the characteristic of requiring low computing time. The exactness of the results obtained with these models depend on the user experience with burning law parameters, which result in a limitation of the applications for these models. Several thermodynamic one-zone models based on burned laws are known, however, the solution to the problem using equations relating geometric and operating parameters of the engine to the combustion process, in order to increase the accuracy without requiring the user to have experience with these laws, have not been studied. This paper presents an algorithm programmed in Visual Basic 2008 to calculate performance parameters of reciprocating internal combustion engines such as power, efficiency, spark advance, evolution of the combustion process and pollutant emissions. The simulation results are compared to experimental
disclosures in the literature.

References

Bartolo-Pérez P., Becerra-Gutiérrez F., Huerta F., Rangel R. (2006). Análisis de superficies y actividad catalítica de catalizadores de Ni, Co, Ru/WO3, MoO3/SiO2. Revista Mexicana de Ingeniería Química 5, 143-146.

Carrera E. J.L., Jose M. Riesco A, Simón Martínez M, Fausto A. Sánchez C., Armando Gallegos M. (2013). Numerical study on the combustion process of a biogas spark ignition engine. Thermal Science 17, 241-254.

Collin R. Ferguson (2001). Internal combustion engines: applied thermosciences. John Wiley & Sons.

Gutiérrez-Martínez A., Perez Hernández R. (2006). Reducción de NO con CO en catalizadores CuO/TiO2-CeO2. Revista Mexicana de Ingeniería Química 5, 203-209.

Heywood, J.B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill.

Houdková L., Borán J., Pecek J., Sumpela P. (2008). Biogás - a renewable source of energy. Thermal
Science 12, 27-33.

Jawurek H. H., Lane N. W., Rallis C. J. (1987). Biogas/petrol dual fuelling of SI engine for rural third world use. Biomass 13, 87-103

Jingdang H., Crookes R. (1998). Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel 77, 1793-1801.

Kanaiyalal B. (2006). Development of a single cylinder SI engine for 100% biogas operation. Tesis de maestría, Indian Institute of Science.

Liu, Z. and Karim, G. A. (1997). Simulation of combustion processes in gas-fuelled diesel engines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 211, 159-169.

Merker P. G., Schwarz C. Stiesch G., Otto F. (2004). Simulation of combustion and pollutant formation for engine-development. Springer Berlin Heidelberg.

Miyamoto, N., Chikahisa, T., Murayama, T. and Sawyer, R. (1985). Description and analysis of diesel engine rate of combustion and performance using Wiebe?s functions. SAE paper 850107.

Muñoz, M., y Payri, F. (1989). Motores de Combustión Interna Alternativos, Sección de Publicaciones de la E.T.S.I.I. Fundación General-UPM.

Pipatmanomai S., Kaewluan S., Vitidsant T. (2009). Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Applied Energy 86, 669-674.

Porpatham E., Ramesh A., Nagalingam B. (2009). Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel 87, 1651-1659.

Rakopoulos C., Michos C., (2008). Development and alidation of multizone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine. Energy conversion and management 49, 2924-2938.

Ramos, J.I. (1989). Internal Combustion Engine Modeling. Hemisphere Publishing Corporation.

Rodríguez-Rosales V., Parra-Berumen J., Campos Trujillo A., De la Peña-Arellano A., J. Rodr´ıguez-Rosales y Valle-Cervantes S. (2006). Modelación atmosférica de la calidad del aire en la ciudad de Chihuahua. Revista Mexicana de Ingeniería Química 5, 15-21.

Rosenberg R. (1982) General friction considerations for engine design SAE paper 821576.

Rousseau S., B Lemoult and M Tazerout. (1999). Combustion characterization of natural gas in a lean burn spark-ignition engine. Proceedings of the Institution of Mechanical Engineers Part D 213, 481-489.

Sacramento-Rivero J.C., Romero G., Cortés- Rodríguez E., Blanco-Rosete S. (2010). Diagnóstico del desarrollo de biorrefinerías en México. Revista Mexicana de Ingeniería Química 9, 261-283.

Watson, N., Pilley, A.D., and Marzouk, M. (1980). A Combustion Correlation for Diesel Engine Simulation. SAE-Paper 800029.

Watts, P. A. and Heywood, J. B. (1980). Simulation studies of the effects of turbocharging and reduced heat transfer on spark ignition engine operation. SAE paper 800289.

Wiebe, Y. (1956). Habempirische formel für die verbrennungsgeschrwindigkeit. Verlag der Akademie der Wissenschaften der VdSSR, Moscow.

Woschni, G. (1967). A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE-Paper 670931.

Zacharias, F. (1967). Analytical representation of the thermodynamic properties of combustion gases. SAE-Paper 670930.
Published
2020-04-15
How to Cite
Carrera-Escobedo, J., Guzmán-Valdivia, C., Ortiz-Rivera, A., Désiga-Orenday, O., & García-Ruíz, M. (2020). THERMODYNAMIC ONE-ZONE MODEL WITH RELATIONS FOR COMBUSTION PROCESS FOR BIOGAS FUELED INTERNAL COMBUSTION ENGINES. Revista Mexicana De Ingeniería Química, 12(3), 649-660. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1568
Section
Thermodynamics