Determination of kinetic parameters of nucleation and growth of acetylsalicylic acid crystals in ethanol

  • X.M. Medina-Galván
  • P.A. Quintana-Hernández
  • J.N. Reyes-Valadez
  • L.F. Fuentes-Cortés
Keywords: acetylsalicylic acid, batch crystallization, crystallization kinetics, nucleation, parameter optimization.


In this work, nucleation and growth kinetics parameters for the acetylsalicylic acid (ASA) -ethanol system were determined from experimental data obtained in a batch crystallization process at different operating conditions. Saturated solutions, between 293.15 K and 313.15 K, were prepared and cooled following linear profiles in the range of 5 to 15 K/h. Measurements online of temperature, density and crystal size distribution were registered every 30 seconds. In addition, an algorithm was developed in Matlab to solve the mathematical model of the crystallization process. The model included the population and mass balances and power-law equations for nucleation and growth. The algorithm allowed optimizing the kinetic parameters by minimizing the sum of the square of the difference between the experimental and calculated profiles for the concentration of ASA in solution. The results showed that increasing the cooling rate increased the growth rates but decreased the nucleation rates. Besides, the average value of g supported that diffusional effects dominate crystal growth and the value of b suggested that secondary nucleation promoted the creation of new nuclei. The global error in the estimation of the kinetic parameters was less than 3%.


Eder. R. J. P., Schrank. S., Besenhard. M. O., Roblegg. E., Gruber-Woelfler. H. y Khinast. J. G. (2012). Continous Sonocrystallization of Acetylsalicylic Acid (ASA): Control of Crystal Size, Crystal Growth and Desing, 12, 4733-4738.
Garcide, J., y Davey, R. J. (1980). Secondary contact nucleation: Kinetics, growth and scale-up, Chemical Engineering Communications, 4, 393-399. 10.1080/00986448008935918.
Garcide, J. y Shah, M. N. (1980). Crystallization kinetics from MSMPR crystallizers, Industrial and Engineering Chemistry Process Design and Development, 19, 509-514.
Jerauld, G. R., Vasatis, Y. y Doherty, M. F. (1983). Simple conditions for the appearance of sustained oscillations in continuous crystallizers, Chemical Engineering Science, 38 (10), 1675-1681.
Jones, A G. (2002). Crystallization Process Systems, First ed. Oxford: Butterworth-Heinemann.
Kashchiev. D., Borissova. A., Hammond, R. B. y Roberts, K. (2010). Dependence of the critical undercooling for crystallization on the cooling rate, J. Phys. Chem. B., 114, 5441-5446,
Liang. B. y Hartel. R.W. (1991). Techniques for developing nucleation and growth kinetics from MSMPR data for sucrose crystallization in the presence of growth rate dispersion, Journal of Crystal Growth, 108, 129-142,
Maia. G. D. y Giulietti. M. (2008). Solubility of Acetylsalicylic Acid in Etanol, Acetone, Propylene Glycol, and 2-Propanol, J. Chem. Eng. Data, 53, 256 – 258. 10.1021/je7005693.
Medina-Galvan. X. M. (2018). Medición del ancho de la zona metaestable de soluciones de ácido acetilsalicílico-etanol, Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico Nacional de México en Celaya.
Mulling, J. W. (2001). Crystallization, 4th. Edition. Oxford: Butterworth-Heinemann.
Mohan, R. y Myerson, A. S. (2002). Growth kinetics: a thermodynamic approach, Chemical Engineering Science, 57, 4277 – 4285.
Monaco. L.A. y Rosenberger. F. (1993). Growth an etching kinetics of tetragonal lysozyme, Journal of Crystal Growth, 129, 465-484,
O’Hara, M. y Reid, R. C. (1973). Modelling crystal growth rates from solution. Englewood Cliffs¸Prentice-Hall.
Qiu. Y. y Rasmuson. A.C. (1994). Estimation of crystallization kinetics from bath cooling experiments, AIChE J., 40(5), 799.
Quintana. P., Bolaños. E., Saucedo. L. y Miranda. C. B. (2004). Mathematical Modeling and Kinetic Parameter Estimation in Batch Crystallization, AIChE Journal, 50, 1407 – 1417,
Quintana-Hernández, P. A., Uribe-Martínez, B., Rico-Ramírez, V., y Bolaños-Reynoso, E. (2008). Análisis comparativo de ecuaciones cinéticas tipo ley de potencia y difusión-integración en la cristalización por enfriamiento de azúcar de caña, Revista Mexicana de Ingeniería Química, 7(2), 171-182.
Rawlings. J. B., Sink. C. W. y Miller. S. M. (2002). Control of crystallization processes, Handbook of Industrial Crystallization (Second Edition), Buttemworth Heinemann, Elsevier, 201-230,
Söhnel, O. y Garside, J. (1991). Precipitation, Oxford: Butterworth-Heinemann.
Wey, J. S. (1985). Analysis of Bath Crystallization Processes, Chemical Engineering Communications, 35: 1- 6, 231 – 252,
Xiong. L., Zhou. L., Zhang. X., Zhang. M., Hou. B., Bao. Y., Du. W., Zhang. S. y Yim. Q. (2018). Determination of metastable zone width and nucleation behavior of aspirin in acetic acid and acetic anhydride binary solvent mixture, Journal of Molecular Liquids, 269, 805-815,
Zauner, R. y Jones, A. G. (2000). Determination of nucleation, growth agglomeration and disruption kinetics from experimental precipitation data: The calcium oxalate system, Chemical Engineering Science, 55, 4219-4232.
Zhang, X. Z., Qian, G. y Zhou, X. (2017). Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid, Journal of Crystal Growth, 463. 162-167,
How to Cite
Medina-Galván, X., Quintana-Hernández, P., Reyes-Valadez, J., & Fuentes-Cortés, L. (2020). Determination of kinetic parameters of nucleation and growth of acetylsalicylic acid crystals in ethanol. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 445-456.
Catalysis, kinetics and reactors