• R.M. Camarillo-Escobedo Instituto Tecnológico de la Laguna
  • F. Valdés-Perezgasga Instituto Tecnológico de la Laguna
  • J. Alonso-Chamarro Universidad Autónoma de Barcelona
Keywords: microfluidics, LTCC, FIA


The miniaturization and automation of the operations of the analytic process is a basic trend in analytical chemistry as it has proved to be advantageous in the measurement and monitoring of environmental and industrial variables. Although the optimization of micro-fluidic systems has achieved the reduction of the dimensions of the channels it has not, per se, impacted on the complete automation of the system as large, traditional, actuators (valves and pumps) are still being employed. This work shows the development of an autonomous hydrodynamic system to drive solutions and control the injection and the mixing of solutions into a microfluidic structure manufactured in LTCC. The implementation of this simple hydrodynamic system is an alternative to the propulsion of fluids used in flow injection analysis (FIA). It has the further advantage of not relying in large actuator devices producing a system amenable to autonomous and portable applications aimed at in-situ measurements.


Alegret, S. (2003). Integrated Analytical Systems. Elsevier, Amsterdam.

Baeza, M.M. (2004). Nuevas estrategias para la gestión de los fluidos en sistemas automatizados de análisis. Tesis de Doctorado en Química, Universidad Autónoma de Barcelona. España.

Camarillo, R. (2009). Desarrollo de Sistemas de Microfluidica para su aplicaci´on a sistemas de analisis total. Tesis de Maestria en Ingenieria Electrica, Instituto, Tecnologico de la Laguna, Mexico.

Camarillo, R,. Valdés, F. y Camarillo, J. (2010). La Tecnología LTCC aplicada al Desarrollo de Sistemas de Microfluidica. Presentación A3-121. 22-24 Septiembre. Monterrey, N.L. XVI Congreso Internacional anual de la Sociedad Mexicana de Ingeniería Mecánica SOMIM.

Cañizares, M.P. (2002). Análisis por inyección de flujo, Herramienta clave para la automatización analitica. Journal of the Mexican Chemical Society 46, 167-174.

DuPont Company. (2007). Low temperature cofireable dielectric tape 951 PX, Data Sheet, Wilmington Delaware USA.

Gongora, M., Espinoza, P., Sola, L. y Santiago, J. (2001). Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST). Elsevier, Science Sensor and Actuator, A-Physics 89, 222- 241.

Gongora, M., Sola, L. y Santiago, J. (2000). Multilayer Ceramic Technology Aplications to Mass Flow Control. Measurement Procedings of Flomeko 2000. Sao Paulo, Brasil. 10th. International Conference on Flow.

Hardt S. y Schonfeld F. (2007). Microfuidic Technologies for miniaturized Analysis Systems. Springer, N.Y., USA.

Ibáñez, N. (2007). Miniaturización de Analizadores Químicos Mediante la Tecnología LTCC. Tesis de Doctorado en Química, Universidad Autónoma de Barcelona, España.

Imanaka, Y. (2005). Multilayered Low Temperature Cofired Ceramics (LTCC) Technology. Springer, Boston, USA.

Manz, A., Graber, N. y Widner, H.M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B-Chemical 1, 244-248

Nevers, N. (2005). Fluid Mechanics for Chemical Engineers. Mc.Graw Hill, N.Y.

Nguyen, N.T. y Wereley, S. (2006). Fundamentals and Aplications of microfluidics. Artech House. Boston, USA.

Potter, M., (2002).Mecánica de Fluidos Aplicada. Thomson, México

Ruzicka, J. y Stewart, J.W.B. (1975). Flow injection Analysis. Part II. Ultrafast determination of phosphorus in plant material by continuous flow spectrophotometria. Analytica Chimica Acta 79, 79-91.

Skoog, D. (2008). Principios de analisis instrumental. Cengage Learning, USA.

Stewart, K.K., Beecher, G.R. y Hare, P.E. (1976). Rapid analysis of discrete samples: The use of nonsegmented continuous flow. Analytical Biochemistry 70, 167-175.

Varcarcel, M. y Cardenas, M.S. (2000). Automatización y miniaturización en Química Analítica. Springer, España.

White, V.R. y Filtzgerald, J.M. (1975). Dyesensitezed continuous photochemical analysis. Identification and relative importance of key experimental parameters. Analytical Chemistry 47, 903-908.
How to Cite
Camarillo-Escobedo, R., Valdés-Perezgasga, F., & Alonso-Chamarro, J. (2020). DEVELOPMENT OF A HYDRODYNAMIC SYSTEM FOR MINIATURIZED SYSTEM FLOW ANALYSIS. Revista Mexicana De Ingeniería Química, 11(2), 299-307. Retrieved from
Environmental Engineering

Most read articles by the same author(s)