EFFECT OF TEMPERATURE IN THE GROWTH RATES AND DECAY HETEROTROPHIC IN THE RANGE OF 20-32◦C IN ACTIVATED SLUDGE PROCESS

  • M. A. Espinosa-Rodríguez Programa de Ingeniería Química del Área de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit
  • N. Flores-Álamo Centro Interamericano de Recursos del Agua. Facultad de Ingeniería, Universidad Autónoma del Estado de México
  • M. Esparza-Soto Centro Interamericano de Recursos del Agua. Facultad de Ingeniería, Universidad Autónoma del Estado de México
  • C. Fall Centro Interamericano de Recursos del Agua. Facultad de Ingeniería, Universidad Autónoma del Estado de México
Keywords: ASM1 model, grow heterotrophic rate, decay heterotrophic rate, respirometry, correction factor for temperature exchange

Abstract

The ASM1 model is accepted as a reference to predict and understand the processes of organic matter degradation, nitrification and denitrification in systems activated sludge. To calibrate the model, requires estimate kinetic parameters such as the maximum grow rate (µHMAX) and decay (bH) heterotrophic. These parameters have been studied for temperatures under 20C. The objective of this investigation was to evaluate µHMAX and bH in a range of temperature of 20 at 32C in the wastewater treatment plant “Dulces Nombres” in Monterrey, Nuevo León, Mexico. The work was based on respirometric tests as part of the calibration of the model ASM1. The fraction of substrate readily biodegradable (SS) was low (34 mg/L) difficult tests for growth. For evaluate µHMAX was necessary to add sodium acetate to obtain a durable growth of the microorganisms and thus to estimate this parameter. The tests of respirometry, were made at temperatures of 20, 24, 28 and 32C. The results average of µHMAX and bH for 20C were 6.9 and 0.40 d−1 respectively. The correction factor by temperature change (θ) of Arrhenius for µHMAX and bH was 1,045 and 1.04 respectively, which can be applied to conditions of warm climate or tropical.

References

Keywords: ASM1 model, grow heterotrophic rate, decay heterotrophic rate, respirometry, correction factor for temperature exchange.

Dold, P., Bye, C., Chapman, K., Brischke, K., White, C., Shaw, A., Barnard, J., Latimer, R., Pitt, P., Vale, P. y Brian, K. (2010). Why do we model and how should we model? WWTmod2010. Second Seminary QC Canada.

Dupont R. y Sinkjær O. (1994). Optimization of wastewater treatment plants by means of computer models. Water Science and Technology 30, 181-190.

Ellis, T. G. y Eliosov, B. (2004). Use of extant kinetic parameters to predict effluent concentrations of specific organic compounds at full-scale facilities. Water Environment Research 76, 444- 452.

Fall, C., Flores, A. N., Espinosa, M. A., Vazquez, ´ G., Loaiza, N. J., van Loosdrecht, M. C. M. y Hooijmans, C. M. (2011). Divergence between respirometry and physicochemical methods in the fractionation of the chemical oxygen demand in municipal wastewater. Water Environment Research 83, 162-172.

Gernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M. y Jorgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the Art. Environmental Modelling & Software 19, 763- 783.

Hauduc, H., Rieger, L., Ohtsuki, T., Shaw, A., Takacs, I., Winkler, S., Heduit, A., Vanrolleghem, P. A. y Gillot, S. (2010). Activated sludge modelling: Development and potential use of a practical applications database. WWTmod2010. Second Seminary QC Canada.

Henze, M., Gujer, W., Mino, T. y van Loosdrecht, M. (2002). Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment. IWA Publishing, London UK.

Hulsbeek, J. J. W., Kruit, j., Roeleveld, P. J. y Loosdrecht, M. C. M. (2002). A practical protocol for dynamic modelling of activated sludge systems. Water Science and Technology 45, 127-136.

Kappeler, J. y Gujer, W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Science and Technology 25, 125-139.

Langergraber, G., Rieger, L., Winkler, S., Alex, J., Wiese, J., Owerdieck, C., Ahnert, M., Simon, J. y Maurer, M. (2004). A guideline for simulation studies of wastewater treatment plants. Water Science and Technology 50, 131-138.

Metcalf y Eddy (2003). Wastewater Engineering, Treatment and Reuse. Fourth Edition, Mc. Graw Hill Companies, Inc.

Petersen, B., Gearney, K., Henze, M. y Vanrolleghem, P. A. (2002). Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. Journal of Hydroinformatics 4, 15-38.

Roeleveld, P. J. y van Loosdrecht, M.C M. (2002). Experience with guidelines for wastewater characterization in the Netherlands. Water Science and Technology 45, 77-87.

Siegrist, H. y Tschui, M. (1992). Interpretation of experimental data with regard to the activated sludge model no. 1 and calibration of the model for municipal wastewater treatment plants. Water Science and Technology 25, 167- 183.

Spangers, H., Vanrolleghem, P., Olsson, G. y Dold, P. (1996). Respirometry in control of the activated sludge process. Water Science and Technology 34, 117-126.

Spangers, H., Takacs, I. y Brouwer, H. (1999). Direct parameter extraction from respirograms for wastewater and biomass characterization. Water Science and Technology 39, 137-145.

Vanrolleghem, P., Spangers, H., Petersen, B., Ginestet, P. y Takacs, I. (1999). Estimating (combination of) activated sludge Model No. 1 parameters and components by respirometry. Water Science and Technology 39, 195-214.

WERF (2003), Methods for wastewater characterization in activated sludge modelling, Water Environment Research Federation (WERF), Alexandria, VA, WERF publication N◦ 9 WWF3.

Xu S. y Hultman, B. (1996) Experiences in wastewater characterization and model calibration for the activated sludge process. Water Science and Technology 33, 89-98.
Published
2020-04-16
How to Cite
Espinosa-Rodríguez, M. A., Flores-Álamo, N., Esparza-Soto, M., & Fall, C. (2020). EFFECT OF TEMPERATURE IN THE GROWTH RATES AND DECAY HETEROTROPHIC IN THE RANGE OF 20-32◦C IN ACTIVATED SLUDGE PROCESS. Revista Mexicana De Ingeniería Química, 11(2), 309-321. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1576
Section
Environmental Engineering