EFFECT OF PULSED ELECTRIC FIELDS ON THE STRUCTURE OF BOVINE α-LACTALBUMIN

  • M.R. Robles-López Instituto Politécnico Nacional
  • R. Robles de la Torre Instituto Politécnico Nacional
  • M. Camarillo-Cadena Universidad Autónoma Metropolitana-Iztapalapa
  • A. Hernández-Arana Universidad Autónoma Metropolitana-Iztapalapa
  • J.S. Welti-Chanes Welti-Chanes
  • H. Hernández-Sánchez Instituto Politécnico Nacional
Keywords: pulsed electric fields, bovine α-lactalbumin, protein structure, molten globule, hydrophobicity

Abstract

Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity for enzyme and microbial inactivation causing minimal effect on food quality. The purpose of this work was to apply PEF to induce structural changes in bovine α-lactalbumin (α-LA). The treatments were performed in an electroporator with field intensities of 4.5, 9 and 10 kV/cm, using 2, 4 and 10 square wave pulses and a 0.2 Hz frequency. Changes were evaluated in PEF-treated protein solutions buffered at pH values of 3, 7 and 10. ANS fluorescence analysis indicated that the higher the field intensity and number of pulses, the higher the protein hydrophobicity. PEF induced moderate changes in the protein secondary and tertiary structure as determined by circular dichroism. These results indicate that PEF can induce non-denaturing changes in the structure of proteins such as α-LA with the possibility of generating beneficial changes in their functional properties for specific food uses.

References

Aguilar, O., Rito-Palomares, M. y Glatz, C.E. (2009). Caracterización tridimensional de proteínas de soya mediante electroforesis de dos dimensiones y partición en fases acuosas. Revista Mexicana de Ingeniería Química 8, 57- 65.

Alizadeh-Pasdar, N. y Li-Chan, C.Y. (2000). Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. Journal of Agricultural and Food Chemistry 48, 328-334.

Barbosa-Cánovas, G., Pothakamury, U. R. y Palou, E. (1998). Nonthermal Preservation of Foods. Ed. Marcel Dekker, Inc., Nueva York.

Bendicho, S., Barbosa-Cánovas, G. y Martin O. (2002). Milk processing by high intensity pulsed electric fields. Trends in Food Science & Technology 13, 195-204.

Bendicho, S., Marsellés F., Barbosa-Cánovas G. y Martín-Belloso O. (2005). High intensity pulsed electric fields and heat treatments applied to a protease from Bacillus subtilis. A comparison study of multiple systems. Journal of Food Engineering 69, 317-323.

Demarest, S.J., Boice, J.A., Fairman, R. y Raleigh, D.P. (1999). Defining the core structure of the α-lactalbumin molten globule state. Journal of Molecular Biology 294, 213-221.

Elez-Martínez, P., Aguilo-Aguayo, I. y Martín Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture 86, 71-81.

Garza-García, L.D. y Lapizco-Encinas, B.H. (2010). Estado del arte en la manipulación de proteínas empleando electroforesis. Revista Mexicana de Ingeniería Química 9, 125-137.

Gongóra-Nieto, M.M., Sepúlveda, D., Pedrow, P., Barbosa, C. y Swanson, B. (2002). Food processing by pulsed electric fields: treatment delivery, inactivation level, and regulatory aspects. Lebensmittel-Wissenschaft und-Technologie 33, 275-288.

González, E., Ancos, B. y Cano, M. (1999). Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry 47, 4068-4072.

Jeantet,R., Baron, F., Nau, F., Roignant, M. y Brulé, G. (1999). High intensity pulsed electric fields applied to egg white: effect on Salmonella enteritidis inactivation and protein denaturation. Journal of Food Protection 62, 1381-1386.

Ju, Z.Y., Hettiarrachchy, N.S. y Rath N. (2001). Extraction, denaturation and hydrophobic properties of rice flour proteins. Journal of Food Science 66, 229-232

Kato, A. y Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta 624, 13-20.

Kelkar, D.A., Chaudhuri, A., Haldar, S. y Chattopadhyay, A. 2010. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin: a wavelengthselective fluorescence approach. European Biophysics Journal 39, 1453-1463.

Kelly, S.M. y Price, N.C. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein and Peptide Science 1, 349-384.

Kronman, M.J., Holmes, L.G. y Robbins, F.M. (1967). Inter- and intramolecular interactions of α-lactalbumin. VIII. The alkaline conformational change. Biochimica et Biophysica Acta 133, 46-55.

Li, Y., Chen, Z. y Mo, H. (2007). Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LebensmittelWissenschaft und-Technologie 40, 1167-1175.

Liu, X., Ning, J. y Clark, S. (2009). Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: a review. Frontiers of Chemical Engineering in China 3, 436-442.

Mayer A. (2006). Polyphenol oxidases in plants and fungi: going places? a review. Phytochemistry 67, 2318-2331.

Min, S., Min, S.K. y Zhang, Q.H. (2003). Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science 68, 1995-2001.

Peng, Z.Y., Wu, L.C. y Kim, P.S. (1995). Local structural preferences in the α-lactalbumin molten globule. Biochemistry 34, 3248-3252.

Pérez, E.O. y Pilosof, A.M.R. (2004). Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Research International 37, 102-110.

Pérez-Iratxeta1, C. y Andrade-Navarro, M.A. (2008). K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology 8, 25.

Permyakov, E.A., Morozova, L.A. y Burstein, E.A.(1985). Cation binding effects on the pH, thermal and urea denaturation transitions in α-lactalbumin. Biophysical Chemistry 21, 21-31.

Piña-Soberanis, M., Martín-Domínguez, A.,González-Ramírez, C.A., Prieto-García, F., Guevara-Lara, A. y García-Espinoza, J.E. (2011). Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista Mexicana de Ingeniería Química 10, 257-271.

Qin, B., Chang, F., Barbosa, C. y Swanson, B. (1995). Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields. LebensmittelWissenschaft und-Technologie 28, 564-568.

Robbins, F.M. y Holmes, L.G. (1970). Circular dichroism spectra of alpha lactoalbumin. Biochimica et Biophysica Acta 221, 234-240.

Rodiles-López, J.O., Jaramillo-Flores, M.E., Gutiérrez-López, G.F., Hernández-Arana, A. Fosado-Quiroz, R.E., Barbosa-Cánovas, G.V. y Hernández-Sánchez, H. (2008). Effect of high hydrostatic pressure on bovine alactalbumin functional properties. Journal of Food Engineering 87, 363-370.

Rodiles-López, J.O., Arroyo-Maya, I.J., Jaramillo- Flores, M.E., Gutiérrez-López, G.F., Hernández-Arana, A., Barbosa-Cánovas, G.V., Niranjan, K. y Hernández-Sánchez, H. (2010). Effect of high hydrostatic pressure on the structure of bovine α-lactalbumin. Journal of Dairy Science 93, 1420-1428.

Rogers, N.K. y Sternberg, M.J. (1984). Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices. Journal of Molecular Biology 174, 527-542.

Sale, A.J.H. y Hamilton, W.A. (1968). Effects of high electric fields on microorganisms. III Lysis of erithrocytes and protoplasts. Biochimica et Biophysica Acta 163, 34-43.

Solís-Oba, M., Eloy-Juárez, M., Teutli, M., Nava, J.L. y González, I. (2009). Comparison of advanced techniques for the treatment of an indigo model solution: electroincineration, chemical coagulation and enzymatic. Revista Mexicana de Ingeniería Química 8, 275-282.

Vivian, J.T. y Callis, P.R. (2001). Mechanisms of tryptophan fluorescente shifts in proteins. Biophysical Journal 80, 2093-2109.

Yeom, H.W., Zhang, Q.H. y Dunne, C.P. (1999). Inactivation of papain by pulsed electric fields in a continuous system. Food Chemistry 67, 53- 59.

Yeom, H.W., Zhang, Q. H. y Chism, G. W. (2002). Inactivation of pectin methylesterase in orange juice by pulsed electric fields. Journal of Food Science 67, 2154-2159.

Zhang, Q.H., Barbosa-Cánovas, G.V. y Swanson, B.G. (1995). Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering 25, 261-281.

Zhang, Q.H, Monsalve-González, A., Qin, B., Barbosa-Cánovas, G.V. y Swanson, B.G. (1994). Inactivation of Saccharomyces cerevisiae in apple juice by square-wave and exponential-decay pulsed electric fields. Journal of Food Process Engineering 17, 469- 478.

Zhong, K., Hu, X., Guanghua, Z., Chen, F. y Liao, X. (2005). Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chemistry 92, 473-479.
Published
2020-04-18
How to Cite
Robles-López, M., Robles de la Torre, R., Camarillo-Cadena, M., Hernández-Arana, A., Welti-Chanes, J. W.-C., & Hernández-Sánchez, H. (2020). EFFECT OF PULSED ELECTRIC FIELDS ON THE STRUCTURE OF BOVINE α-LACTALBUMIN. Revista Mexicana De Ingeniería Química, 11(3), 373-382. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1585

Most read articles by the same author(s)