Omega fatty acids production in an isolated native Chlorella sp. from northeast Mexico with improved growth using urine as nutritive medium

  • J.C. Canino-Gómez
  • B. Limón-Rodríguez
  • P. Rivas-García
  • C. Escamilla-Alvarado
  • J.R. Morones-Ramírez
  • M.M. Alcalá-Rodríguez
Keywords: Microalgae; Urine; Lipid accumulation; Essential fatty acids; Sustainable processes


The production of essential fatty acids (Omega 3, 6, 9) from microalgae consortia and from Chlorella sp., using urine as a culture medium, was analyzed in this study. These microorganisms require a supply of nutrients and light to stimulate their growth; and through variations of these factors, it is possible to improve lipid synthesis, fundamental elements for the production of value-added products. The BG11 culture medium was replaced with a urine-based medium (MOB) to cultivate a microalgae of the genus Chlorella sp, native to the State of Nuevo León. The growth of the microalgae in MOB was increased when compared to its growth in BG11. An improvement was also observed in the production of fatty acids and proteins, where the cultivation of Chlorella sp. with the urine medium (MOB) showed an average production (%) of 17.22% saturated fatty acids (SUFA's), 22.03% of monounsaturated fatty acids (MUFA's) and 60.73% of polyunsaturated fatty acids (PUFA's), demonstrated also in the high concentrations of mainly linoleic and linoleic fatty acids in the microalgae. This work, shows that human urine as a culture medium, provides enough nutrients to increase the production of biomass and oils; therefore, the use of this organic residue as a nutritive medium can be considered a suitable source for the production of essential fatty acids


Ahmad, A., S. M., Osman, T., Cha, Sand H. Loh.(2016). "Phosphate-induced changes in fatty acid biosynthesis in Chlorella sp. KS-MA2 strain."Journal of Biotechnology Computational Biology and Bionanotechnology 97(4).
Atta, M., A.,Idris, A., Bukhari,, and S. Wahidin. (2013). "Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris" Bioresource technology 148: 373-378.
Aziz, M. (2016). "Integrated hydrogen production and power generation from microalgae." International Journal of Hydrogen Energy 41(1): 104-112.
Batista, A. P. L., Gouveia, N. M., Bandarra, J. M., Franco and A. Raymundo (2013). "Comparison of microalgal biomass profiles as novel functional ingredient for food products." Algal Research 2(2): 164-173.
Becker.E.W. (2007).“Micro-algae as a source of protein” BiotechnolAdv 25:207-210.
Bellou, S. I.-E.,Triantaphyllidou, D.,Aggeli, A. M.,Elazzazy, M. N.,Baeshen and G. Aggelis. (2016). "Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content." Current opinion in Biotechnology 37: 24-35.
Bligh, E.G., Dyer, W.J. (1959).“A rapid method for total lipid extraction and purification” J. Biochem.Physiol 37: 911-917.
Bungartz, F., Nash III. (2003). “Claves para la identificación de los géneros de fotobiontes” Consejería de Medio Ambiente, Ordenación del Territorio e Infraestructura del Principado de Asturias y KRK ediciones.
Cai, T., ParkS. Y.,and Y. Li. (2013). "Nutrient recovery from wastewater streams by microalgae: status and prospects." Renewable and Sustainable Energy Reviews 19: 360-369.
Chang, Y., Wu,Z.,Bian,L.,Feng, D. and D. Y. C. Leung. (2013). "Cultivation of Spirulinaplatensis for biomass production and nutrient removal from synthetic human urine." Applied energy 102: 427-431.
Chen, M., Tang H..Ma T., Holland T.C., Simon K.Y. and S.O.Salley. (2011). "Effect of nutrients on growth and lipid accumulation in the green algae Dunaliellatertiolecta.”Bioresource technology 102 (2): 1649-1655.
Coppens, J., Lindeboom, R.,Muys, M.,Coessens, W.,Alloul,A.,Meerbergen,K.,Lievens, B.,Clauwaert,P., Boon, N. and S. E. Vlaeminck. (2016). "Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine." Bioresource technology 211: 41-50.
Darki, B.Z., Seyfabadi1, J., Fayazi, S. (2017). “Effect of nutrients on total lipid content and fatty acids profile of Scenedesmusobliquus." Agriculture, Agribusiness and Biotechnology 60: 1-12.
Dayton, P. K. (1971). "Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community." Ecological Monographs 41(4): 351-389.
Fariz-Salinas, E.A., Martínez, W., López U. (2019). "Actividad antimicrobiana del consorcio de microalgas floculantes (BR-UANL-01), nativo del Estado de Nuevo León, México” Revista de Ciencias Farmacéuticas y Biomedicina 2448-8380.
Feng, D.-l. and Z. Wu. (2006). "Culture of Spirulinaplatensis in human urine for biomass production and O2 evolution." Journal of Zhejiang University Science B 7(1): 34-37.
Franchino, M., Comino, E., Bona, F., Riggio, V.A.(2013). "Growth of three microalgae strains and nutrient removal from an agro-zootechnicaldigestate” Chemosphere 92(6):738-744.
Gouveia, L. and A. C. Oliveira. (2009). "Microalgae as a raw material for biofuels production." Journal of industrial microbiology & biotechnology 36(2): 269-274.
Hosseini, N. S., H. Shang, G. M. Ross and J. A. Scott. (2015). "Microalgae cultivation in a novel top-lit gas-lift open bioreactor." Bioresource technology 192: 432-440.
Jaatinen, S., Lakaniemi, A.-M. and J. Rintala. (2016). "Use of diluted urine for cultivation of Chlorella vulgaris." Environmental technology 37(9): 1159-1170.
Kothari, R., A.,Pandey, S., Ahmad, A., Kumar, V. V.,Pathak and V. Tyagi. (2017). "Microalgal cultivation for value-added products: a critical enviro-economical assessment." Biotech 7(4): 243.
Lee, K. M. L.,Eisterhold, F.,Rindi, S.,Palanisami and P. K. Nam. (2014). "Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources." Journal of natural science, biology, and medicine 5(2): 333.
Lim, D. K., S. Garg, M., Timmins, E. S., Zhang, S. R., Thomas-Hall, H.,Schuhmann, Y. Li and P. M. Schenk. (2012). "Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters." PLoS One 7(7): e40751.
Lombardi, A.T., Maldonado, M.T. (2011).“The effects of copper on the photosynthetic response of Phaeocysticcordata”. Photosynth Res 108: 77-87.
Lv, J., Wu, H and M. Chen. (2011). "Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China." Limnologist 41(1): 48-56.
May-Cua, E.R., Toledano-Thompson, T., Alzate-Gaviria, L.M., Barahona-Pérez, L.F. (2019) “A cylindrical-conical photobioreactor and sludge drying bed as an efficient system for cultivation of the green microalgae Coleastrum sp. and dry biomass recovery” Revista Mexicana de IngenieríaQuímica18(19): 1-11.
Mercer, P. and R. E. Armenta. (2011). "Developments in oil extraction from microalgae." European journal of lipid science and technology 113(5): 539-547.
Mutlu, Y.B., Isik, L., Uslu, K., Koc.,Durmaz, Y. (2011). “The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae)” African J. Biotechnol10: 453-456.
Ohlrogge, J. and Browse, J. (1995). "Lipid biosynthesis." The Plant Cell 7(7): 957.
Paine, R. T. and S. A. Levin. (1981). "Intertidal landscapes: disturbance and the dynamics of pattern." Ecological monographs 51(2): 145-178.
Pegallapati, A. K. and N. Nirmalakhandan. (2011). "Energetic evaluation of an internally illuminated photobioreactor for algal cultivation." Biotechnology letters 33(11): 2161.
Peñaranda, M. T. A., Roldán A. D. J. M. and R. O. C. Villanueva (2013). "Producción de biodiesel a partir de microalgas: parámetros del cultivo que afectan la producción de lípidos." ActaBiológicaColombiana 18(1): 43-68.
Richmond, A. and Q. Hu. (2013). Handbook of microalgal culture: Applied phycology and biotechnology.John Wiley & Sons.
Robles, J.C. (2017). Evaluación de la productividad de lípidos en microalgas: La hidrodinámica en FBR como factor para el incremento de lípidos en microalgas. Editorial EAE. Germany.
Rohit, M.V., Venkata S. (2018). "Quantum Yield and Fatty Acid Profile Variations With Nutritional Mode During Microalgae Cultivation” Frontier in Bioengineering and Biotechnology 6:111.
Roughgarden, J. (1983). "Competition and theory in community ecology." The American Naturalist 122(5): 583-601.
Solis-Méndez, A., Molina-Quintero, M., Oropeza-De la Rosa E., Cantú-Lozano, D., Del Bianchi1, V.L. (2020). "Study of agitation, color and stress light variables on Spirulinaplatensis culture in a vertical stirred reactor in standard medium” Revista Mexicana de IngenieríaQuíimca 19(1): 481-490.
Spolaore, P.,Joannis-Cassan,C., DuranE. and A. Isambert. (2006). "Commercial applications of microalgae." Journal of bioscience and bioengineering 101(2): 87-96.
Wang, B., Lan C.Q. (2011). "Optimising the lipid production of the green alga Neochlorisoleoabundans using box–behnken experimental design." The Canadian Journal of Chemical Engineering 89(4): 932-939.
Xue, J.,Wang, L., Zhang, L.,Balamurugan,S., Li, D-W.,Zeng, H., Yang, W-D., Liu, J-S.and H-Y. Li. (2016). "The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa." Microbial cell factories 15(1): 120.
Yu, W-L., Ansari, W.,Schoepp,N. G., Hannon,M. J., Mayfield, S. P. and M. D. Burkart. (2011). "Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae." Microbial cell factories 10(1): 91.
Zhang, X., Amendola,P.,Hewson,J. C.,Sommerfeld, M. and Q. Hu. (2012). "Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation." Bioresource technology 116: 477-484.
Zhou, G.-J., Ying,G.-G., Liu,S., Zhou,L.-J., Chen, Z.-F. and F.-Q. Peng. (2014). "Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae." Environmental Science: Processes & Impacts 16(8): 2018-2027.
How to Cite
Canino-Gómez, J., Limón-Rodríguez, B., Rivas-García, P., Escamilla-Alvarado, C., Morones-Ramírez, J., & Alcalá-Rodríguez, M. (2020). Omega fatty acids production in an isolated native Chlorella sp. from northeast Mexico with improved growth using urine as nutritive medium. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 161-176.

Most read articles by the same author(s)