ADVANCES IN THE PHYTOCHEMISTRY OF Cuphea aequipetala, C. aequipetala var. hispida and C. lanceolata: EXTRACTION AND QUANTIFICATION OF PHENOLIC COMPOUNDS AND ANTIOXIDANT ACTIVITY

  • B.A. Cardenas-Sandoval
  • A.R. López-Laredo
  • B.P. Martínez-Bonfil
  • K. Bermúdez-Torres
  • G. Trejo-Tapia
Keywords: antioxidant activity, Cuphea, phenolic compounds, free radical-scavenging, reducing power

Abstract

Cuphea aequipetala and Cuphea lanceolata native to Mexico are used in folk medicine. Extraction procedure standardization was performed and the amount of total phenolic compounds and flavonoids was determined in methanol extracts (obtained by stirring for 24 h) from various organs of C. aequipetala, C. aequipetala var. hispida and C. lanceolata. The antioxidant properties of extracts were compared using in vitro free radical-scavenging assays (1,1-diphenyl-2-picrylhydrazyl (DPPH˙+) and 2,2’-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid (ABTS˙+)) and the reducing power of phosphomolybdenum (PPM). A significant correlation was found between antioxidant activity and the amount of antioxidant components. Flowers of C. lanceolata showed the highest concentration of phenolic compounds (62.79±0.05 mg gallic acid equivalents (GAE)/g dry weight (DW) and the highest content of flavonoids was found in leaves of C. aequipetala (196.83±2.9 mg quercetin equivalents (QE)/g DW). The highest free radical-scavenging activity against DPPH˙+ was found in leaves of C. aequipetala var. hispida (173.33±2.12µmol trolox/g DW), for ABTS˙+ in flowers of C. aequipetala (541.10±2.32µmol trolox/g DW) and for PPM in leaves of C. aequipetala (1186.25±3.17µmol trolox/g DW). Qualitative analysis indicated the presence of the flavonoid quercetin 3-β-D-glucoside in all the species of Cuphea amongst other less polar flavonoids in C. aequipetala var. hispida. Cuphea spp. are prospective sources of phenolic compounds

References

Adedapo, A.A., Jimoh, F.O., Koduru, S., Masika, P.J. and Afolayan, A.J. (2008). Evaluation of the medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida. Bioresource Technology 99, 4158-4163.

Aguilar-Rodríguez, S, Echeveste-Ramírez, N.L., López-Villafranco, M.E., Aguilar-Contreras, A., Vega-Avila, E. and Reyes-Chilpa. R. (2012). Etnobot´anica, micrografía analítica de hojas y tallos y fitoquimica de Cuphea aequipetala Cav. (Lythraceae): una contribución a la Farmacopea Herbolaria de los Estados Unidos Mexicanos (FHEUM). Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 11, 316-330.

Ayan, A.K., Yanar, O., Cirak, C. and Bilgener, M. (2007). Morphogenetic and diurnal variation of total phenols in some Hypericum species from Turkey during their phenological cycles. Bangladesh Journal of Botany 36, 39-46.

Barbosa, E., Calzada, F. and Campos, R. (2007). In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. Journal of Ethnopharmacology 109, 552-554.

Bhatt, I.D., Dauthal, P., Rawat, S., Gaira, K.S., Jugran, A., Rawal, R.S. and Dharb U. (2012). Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Scientia Horticulturae 136, 61-68.

Biavatti, M.W., Farias, C., Curtius, F., Brasil, L.M., Hort, S., Schuster, L., Leite, S.N. and Prado, S.R.T. (2004). Preliminary studies on Campomanesia xanthocarpa (Berg.) and Cuphea carthagenensis (Jacq.) J.F. Macbr. aqueous extract: weight control and biochemical parameters. Journal of Ethnopharmacology 93, 385-389.

Bolling, B.W., Blumberg, J.B. and Chen, C.Y.O. (2009). Extraction methods determine the antioxidant capacity and induction of quinone reductase by soy products in vitro. Food Chemistry 116, 351-355.

Buer, C.S., Imin, N. and Djordjevic, M.A. (2010). Flavonoids: New Roles for Old Molecules. Journal of Integrative Plant Biology 52, 98-111.

Braga, F., Wagner, H., Lombardi, J.A. and Braga de Oliveira, A. (2000). Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting activity. Phytomedicine 7, 245-250.

Cai, Y., Luo, Q., Sun, M. and Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Science 74, 2157-2184.

Calzada, F. (2005). Additional antiprotozoal constituents from Cuphea pinetorum, a plant used in Mayan traditional medicine to treat diarrhoea. Phytotherapy Research 19, 725-727.

Carvalho, I.S., Cavaco, T. and Brodelius, M. (2011). Phenolic composition and antioxidant capacity of six Artemisia species. Industrial Crops and Products 33, 382-388.

Castillo-Juárez, I., González, V., Jaime-Aguilar, H., Martínez, G., Linares, E.R. and Romero, I. (2009). Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Journal of Ethnoparmacology 122, 402-405.

Diouf, P.N., Stevanovic, T. and Cloutier, A. (2009). Antioxidant properties and polyphenol contents of trembling aspen bark extracts. Wood Science and Technology 43, 457-470.

Dykes L., Rooney L.W., Waniska R.D. and Rooney W.L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry 53, 6813-6818.

Estrada-Zúniga, M. E., Arano-Varela, H., Buendía- González, L. and Orozco-Villafuerte, J. (2012). Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures. Revista Mexicana de Ingeniería Química 11, 89-96.

García-Márquez, E., Román-Guerrero, A., Pérez- Alonso, C., Cruz-Sosa, F., Jiménez-Alvarado, R. and Vernon-Carter, E.J. (2012). Effect of solvent-temperature extraction conditions on the initial antioxidant activity and total phenolic content of Muitle extracts and their decay upon storage at different pH. Revista Mexicana de Ingeniería Química 11, 1-10.

Gesch, R.W., Kim, K.-I. and Forcella, F. (2010). Influence of seeding rate and row spacing on Cuphea seed yield in the Northern Corn Belt. Industrial Crops and Products 32, 692-695.

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P.E.M. and Abd Halim, M.R.A. (2010). Effect of different light intensities on total phenolics and flavonoids synthesis and antioxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal Molecular Science 11, 3885-3897.

Graham, S.A. (1991). Lythraceae. Flora de Veracruz. Instituto de Ecología, A. C. México. 45 p.

Graham, S.A. and Kleiman, R. (1992). Composition of seed oils in some Latin American Cuphea (Lythraceae). Industrial Crops and Products 1,31-34.

Gu, L., Wu, T. and Wang, Z. (2008). TLC bioautography guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWTFood Science and Technology 42, 131-136.

Guha, G., Rajkumar, V., Kumar, R.A. and Mathew, L. (2011). Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium (VI)-Induced Cellular and DNA Toxicity. eCAM. Article ID 576456, 9 pages,doi:10.1093/ecam/nep205.

He, C.-E., Wei, J., Jin, Y. and Chen, S. (2010). Bioactive components of the roots of Salvia miltiorrhizae: Changes related to harvest time and germplasm line. Industrial Crops and Products 32, 313-317.

Hutzler, P., Fischbach, R., Heller, W., Jungblut, T.B., Reuber, S., Schmitz, R., Veit, M., Weissenbock G. and Schnitzler, J.P. (1998). Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. Journal of Experimental Botany 49, 953-965.

Jiménez, M., Castillo, I., Azuara, E. and Beristain, C.I. (2011). Antioxidant and antimicrobial activity of capulin (Prunus serotina subsp capuli) extracts. Revista Mexicana de Ingeniería Química 10, 29-37.

Juntachote, T. and Berghofer E. (2005). Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chemistry 92, 193-202.

Kefeli, V.I., Kalevitch M.V. and Borsari B. (2003). Phenolic cycle in plants and environment. Journal of Cell and Molecular Biology 2, 13-18.

Kim, K.-I., Gesch, R.W., Cermak, S.C., Phippen, W.B., Berti, M.T., Johnson, B.L. and Marek, L. (2011). Cuphea growth, yield, and oil characteristics as influenced by climate and soil environments across the upper Midwest USA. Industrial Crops and Products 33, 99-107.

Klepacka, J., Gujska, E. and Michalak, J. (2011). Phenolic compounds as cultivar- and varietydistinguishing factors in some plant products. Plant Foods for Human Nutrition 66, 64-69.

Krepsky, P.B., Isidório, R.G., Dias de Souza J. F., Cˆortes, S.F. and Castro Braga, F. (2012). Chemical composition and vasodilatation induced by Cuphea carthagenensis preparations. Phytomedicine 19, 953-957.

Krishnaiah, D., Sarbatly R. and Nithyanandam, R. (2010). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing 89, 217-233.

Lattanzio, V., Lattanzio, V.M.T. and Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research. Editor: Filippo Imperato. 23.

Li, H.B., Wong, C.C., Cheng, K.W. and Chen, F. (2008). Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Science and Technology 41, 385-390.

Liu, X., Jia, J., Yang, L., Yang, F., Ge, H., Zhano, C., Zhang, L. and Zu, Y. (2012). Evaluation of antioxidant activitie of aqueous extracts and fractionation of different parts of Elsholtzia ciliata. Molecules 17, 5430-5441.

López-Laredo, A., Gómez-Aguirre, Y., Medina- Pérez, V., Salcedo-Morales, G., Sepúlveda- Jim´enez, G. and Trejo-Tapia, G. (2012). Variation in antioxidant properties and phenolics concentration in different organs of wild growing and greenhouse cultivated Castilleja tenuiflora Benth. Acta Physiologiae Plantarum doi: 10.1007/s11738-012-1025-8.

Martz, F., Jaakola, L., Julkunen-Tiitto, R. and Stark, S. (2010). Phenolic composition and antioxidant capacity of bilberry (Vaccinium mytrillus) leaves in northern Europe following foliar development and along environmental gradients. Journal of Chemical Ecology 36,1017-1028.

Marwah, R.G., Fatope, M.O., Mahrooqi, R.A., Varma, G.B., Abadi, H.A. and Al-Burtamani, S.K.S. (2007). Antioxidant capacity of some edible and wound healing plants in Oman. Food Chemistry 101, 465-470.

Millam, S., Mitchell, S.M., Moscheni, E. and Lyon, J.E. (1997). The establishment and regeneration of range of Cuphea germplasm in vitro. Plant Cell Tissue and Organ Culture 48, 143-146.

Naghiloo S., Movafeghi A., Delazar A., Nazemiyeh H., Asnaashari S. and Reza Dadpour M. (2012). Ontogenetic variation of total phenolics and antioxidant activity in roots, leaves and flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts 2, 105-109.

Pasko, P., Barton, H., Zagrodzki, P., Gorinstein, S., Folta, M. and Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry 115, 994-998.

Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M.E., Serrano, J., Goñi, I. and Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International 1, 274-285.

Phippen, W.B. (2010). Cuphea, In: Vollmann, J.,Rajcan, I. (Eds.), Oil Crops. Springer New York, pp. 517-533.

Phippen W. B., Isbell T. A. and Phippen M. E. (2006). Total seed oil and fatty acid methyl ester contents of Cuphea accessions. Industrial Crops and Products 24, 52-59

Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Analytical Biochemistry 269, 49-56.

Re, R., Pelligrini, N., Proteggente, A., Pannal, A., Yang, M. and Rice, E.C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26, 1231-1237.

Rice-Evans C. A. and Miller N.J. (1996). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions 24, 790-795.

Sánchez-Moreno, C., Larrauri, J.A. and Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76, 270-276.

Santiago, L.J.M., Louro, R.P. and De Oliveira, D.E. (2000). Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Annals of Botany 86, 1023-1032.

Saxena, A., Saxena, A.K., Singh, J. and Bhushan, S. (2010). Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chemico-Biological Interactions 188, 580-590.

Schuldt, E.Z., Farias, M.R., Ribeiro-do-Vallea, R.M. and Ckless, K. (2004). Comparative study of radical scavenger activities of crude extract and fractions from Cuphea carthagenensis leaves. Phytomedicine 11, 523-529.

Serrano-Maldonado, M. J., Guerrero-Legarreta, I., Pérez-Olvera, C.D.P. and Soriano-Santos, J. (2011). Actividad antioxidante y efecto citotóxico de Cladocolea loniceroides (van Tieghem) Kuijt (Loranthaceae). Revista Mexicana de Ingeniería Química 10, 161-170.

Sucontphunt, A., De-Eknamkul, W., Nimmannit, U., Dan Dimitrijevich, S. and Gracy, R.W. (2011). Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts. Journal of Nature Medicines 65, 1-8.

Shohael, A.M., Chakrabarty, D., Ali M.B., Yu, K.W., Hahn, E.J., Lee, H.L. and Paek K.Y. (2006). Enhancement of eleutherosides production in embryogenic cultures of Eleutherucoccus sessiflorus in response to sucrose-induced osmotic stress. Process Biochemistry 41, 512-518.

Solon, S., Lopes, L., Teixeira de Sousa, P. and Schmeda-Hirschmann, G. (2000). Free radical scavenging activity of Lafoensia pacari. Journal of Ethnopharmacology 72, 173-178.

Tisserat, B., O’Kuru, R.H., Cermak, S.C., Evangelista, R.L. and Doll, K.M. (2012). Potential uses for Cuphea oil processing by products and processed oils. Industrial Crops and Products 35, 111-120.

Tunalier, Z., Kosar, M., K¨upeli, E., Calis, I. and Baser, K.H.C. (2007). Antioxidant, antiinflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. Journal of Ethnopharmacology 110, 539-547.

Turkmen, N., Sari, F. and Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry 99, 835-841.

Vega-Avila, E., Aguilar, R.T., Estrada, M.J., Ortega, M.L.V. and Ramos, R.R. (2004). Cytotoxic Activity of Cuphea aequipetala. Proceedings of the Western Pharmacology Society 47, 129-133.

Vega, E. (2005). Estudio de Cuphea aequipetala Cav. sobre la proliferación de células humanas transformadas. Tesis de Doctorado. Universidad Autónoma Metropolitana. México, D.F., 133 p.

Vermerris W. and Nicholson R. (2008). Phenolic compounds and their effects on human health. In: Vermerris W, Nicholson R (eds) Phenolic Compound Biochemistry. Springer Science+Business Media BV, pp. 235-255.

Waizel, B.J. (2006). Las plantas en la historia de la medicina. In: Las plantas medicinales y las ciencias una visión multidisciplinaria. (eds.) Instituto Politécnico Nacional, pp. 587.

Waizel-Bucay, J., Martinez-Porcayo, G., Villarreal-Ortega, M.L., Alonso-Cortes, D. and Pliego-Castañeda, A. (2003). Estudio preliminar etnobotanico, fitoquimico de la actividad citot´oxica y antimicrobiana de Cuphea aequipetala Cav. (Lythraceae). Polibotánica 14, 99-108.

Wang, C.-C., Chen, L.-G. and Yang, L.-L. (1999). Antitumor activity of four macrocyclic ellagitannins from Cuphea hyssopifolia. Cancer Letters 140, 195-200.

Wang, S.Y., Chen, C.T. and Wang, C.Y. (2009). The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chemistry 112, 676-684.

Wolf R.B., Graham S.A. and Kleiman, R. (1983). Fatty acid composition of Cuphea seed oils. JAOCS 60, 27-28.

Zhao, J., Dixon, R.A. (2010). The [‘]ins’ and [‘]outs’ of flavonoid transport. Trends in Plant Science 15, 72-80.

Zheljazkov, V.D., Cantrell, C.L. and Astatkie, T. (2011). Variation in podophyllotoxin concentration in leaves and rhizomes of American mayapple (Podophyllum peltatum L.). Industrial Crops and Products 33, 633-637.
Published
2020-04-23
How to Cite
Cardenas-Sandoval, B., López-Laredo, A., Martínez-Bonfil, B., Bermúdez-Torres, K., & Trejo-Tapia, G. (2020). ADVANCES IN THE PHYTOCHEMISTRY OF Cuphea aequipetala, C. aequipetala var. hispida and C. lanceolata: EXTRACTION AND QUANTIFICATION OF PHENOLIC COMPOUNDS AND ANTIOXIDANT ACTIVITY. Revista Mexicana De Ingeniería Química, 11(3), 401-413. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1615