EFFECTS OF SOLVENT AND INHIBITION OF QUINOLINE IN THE HYDRODESULFURIZATION OF DIBENZOTHIOPHENE

  • J.C. Mogica-Betancourt
  • Z. Contreras-Valdez
  • A. Guevara-Lara
Keywords: quinoline, solvent effect, hydrodesulfurization

Abstract

In order to consider some drawbacks that avoid obtaining diesel and gasoline with ultra-low sulfur concentration, inhibition by quinoline and solvent effects on dibenzothiophene (DBT) hydrodesulfurization (HDS) were evaluated in this work. Reaction results without quinoline indicated that solvents such as: n-heptane (gasoline model) and n-hexadecane (diesel model) affected the reaction rate. According to a Langmuir-Hinshelwood model, KDBT =Ksolvent values showed that adsorption of DBT on the catalyst was more important than that of the solvent. This solvent/DBT competition for the active sites on the catalyst was more notorious in the gas phase (n-heptane) than in the liquid phase (hexadecane) reactions. Furthermore, selectivity depended on the solvent: direct desulfurization pathway was favored in n-hexadecane. The inhibition factor data indicated that quinoline inhibition was similar for both solvents. The rate of Dibenzothiophene hydrodesulfurization was affected mainly by quinoline inhibition, regardless of the phase at which the reaction took place.

References

Egorova M. y Prins R. (2004). Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine and hydrogenation of naphthalene over sulfided NiMo/ -Al2O3. Journal of Catalysis 224, 278-287.

Egorova M. y Prins R. (2004). Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/ -Al2O3, CoMo/ -Al2O3, and Mo/-Al2O3 catalysts. Journal of Catalysis 225, 417-427.

Guevara A., Bacaud R. y Vrinat M. (2003). Solvent effect in gas-liquid hydrotreatment reactions. Applied Catalysis A 253, 515-526.

Guevara-Lara A., Cruz-Pérez A. E., Contreras-Valdez Z., Mogica-Betancourt J., Alvarez-Hernández A. y Vrinat M. (2010). Eect of Ni promoter in the oxide precursors of MoS2/MgOAl2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catalysis Today 149,288-294.

Gutiérrez-Tinoco O., Romero-Moreno K., Leocadio- Cerón E., Fuentes-Zurita G. y Klimova- Berestneva T. (2006). Soportes SBA-15 modificados con Ti y Zr por injertado químico para catalizadores NiMo de HDS profunda. Revista Mexicana de Ingeniería Química 5, 179-187.

Heeyeon K., Jung J. L., Jae H.K. y Sang H.M. (2004). Effect of fluorine addition on the poisoning of NiMo/Al2O3 catalysts by nitrogen compounds during the hydrodesulfurization of dibenzothiophene compounds. Applied Catalysis B 18, 17-24.

Huirache-Acuña R., Albiter M., Paraguay-Delgado F., Lumbreras Pacheco J. A., Ornelas C., Martínez-Sánchez R. y Alonso-Núñez G., (2006). Síntesis y caracterización de catalizadores no soportados de sulfuros de Ni, Mo Y W para la HDS de DBT. Revista Mexicana de Ingeniería Química 5, 285-292.

Houalla, M., Broderick, D. H., Sapre, A. V., Nag, N. K., de Beer, V. H. J., Gates, B. C. y Kwart, H. (1980). Hydrodesulfurization of Methyl-Substituted Dibenzothiophenes Catalyzed by Sulfided CoO-MoO3. Journal of Catalysis 61, 523-527.

Hynaux A., Sayag C., Suppan S., Trawczynski J., Lewandowski M., Szymanska-Kolasa A. y Djéga-Mariadassou G. (2007). Kinetic study of the deep hydrodesulfurization of dibenzothiophene over molybdenum carbide supported on a carbon black composite: Existence of two types of active sites. Catalysis Today 119, 3-6.

Kwak C., Lee J.J., Bae J.S. y Moon S.H. (2001). Poisoning effect of nitrogen compounds on the performance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene. Applied Catalysis B 35, 59-68.

La Vopa V. y Satterfield C.N. (1988). Poisoning of thiophene hydrodesulfurization by nitrogen compounds. Journal Catalysis 110, 375-387.

Liu K. y Ng F. (2010). Effect of the nitrogen heterocyclic compounds on hydrodesulfurization using in situ hydrogen and a dispersed Mo catalyst. Catalysis Today 149, 28-34.

NOM-086 (2006), Especificaciones de los combustibles fósiles para la protección ambiental. Norma oficial mexicana NOM-086-SEMARNAT-SENER-SCFI-2005. Diario Oficial de la federación, lunes 30 de Enero 2006. No.1, 64-81.

Parijs I. A. V. y Froment G. F. (1986). Kinetics of hydrodesulfurization on a cobaltmolybdenum /gamma-alumina catalyst. 1. Kinetics of the hydrogenolysis of thiophene. Industrial and Engineering Chemical Research and Development 25, 431-436.

Schulz H., Böhringer W., Ousmanov F. y Waller P. (1999). Gas oil deep hydrodesulfurization: refractory compounds and retarded kinetics. Catalysis Today 49, 87-97.

Shihara A., Itoh T., Hino T., Nomura M. y Qi P. (1993). Effects of Solvents on Deep Hydrodesulfurization of Benzothiophene and Dibenzothiophene. Journal of Catalysis 140, 184-189.

Torres-Mancera P., Ramírez J., Gutiérrez-Alejandre A. y Cuevas R. (2006). Modificación de catalizadores NiMo/Al2O3 mediante adición de boro y evaluación de su actividad en HDS de 4,6-DMDBT Y DBT. Revista Mexicana de Ingeniería Química 5, 219-226.

Wang H., Fan Y., Shi G., Liu Z., Liu H. y Bao X. (2007). Highly dispersed NiW/ -Al2O3 catalyst prepared by hydrothermal deposition method. Catalysis Today 125, 149-154.

Xiaoling M., Kinya S. y Isao M. (1994). Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Industrial Engineering Chemical Research 33, 218-222.
Published
2020-04-27
How to Cite
Mogica-Betancourt, J., Contreras-Valdez, Z., & Guevara-Lara, A. (2020). EFFECTS OF SOLVENT AND INHIBITION OF QUINOLINE IN THE HYDRODESULFURIZATION OF DIBENZOTHIOPHENE. Revista Mexicana De Ingeniería Química, 11(3), 447-453. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1628
Section
Catalysis, kinetics and reactors