Ni-MORDENITE SYSTEM: INFLUENCE OF SiO2/Al2O3 MOLAR RATIO ON THE CATALYTIC ACTIVITY IN NO REDUCTION

  • R. Obeso-Estrella
  • A. Simakov
  • M. Avalos-Borja
  • F. Castillón
  • E. Lugo
  • V. Petranovskii
Keywords: Ni-mordenite, SiO2/Al2O3 molar ratio, carbon nanotubes, NO reduction, UV-Vis

Abstract

Mordenites with SiO2/Al2O3 molar ratio (MR) of 13, 20 and 90 were exchanged with a Ni2+. The samples were characterized by XRD, EDS, DRS and TEM. UV-Vis spectra of all Ni-exchanged samples were typical for a Ni(H2O)2+6 ions octahedrally coordinated by water molecules. In the UV range, samples with MR of 20 and 90 showed absorption around 250-300 nm due to partial dehydration on Ni2+ ions and their coordination with O2- of the zeolite framework. It was revealed that Ni species formed on mordenite NiNaMor13 with low molar ratio are weakly bound to the mordenite framework; as a consequence, high catalytic activity in NO reduction is observed. Easy red-ox transformation of such a species results in the activation of propene pyrolysis with formation of carbon nanostructures.

References

Abu-Zied, B.M., Schwieger, W. and Unger A. (2008). Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method. Applied Catalysis B-Environmental 84, 277-288.

Baerlocher, Ch., McCusker, L.B. and Olson D.H. (2007). Atlas of zeolite framework types, 6th edition, Amsterdam: Elsevier. v Bogdanchikova, N., Petranovskii, V., Machorro Mejia, R., Sugi, Y., Soto, V.M. and Fuentes, S. (1999). Stability of silver clusters in mordenites with different SiO2/Al2O3 molar ratio. Applied Surface Science 150, 58-64.

Bogdanchikova, N., Petranovskii, V., Fuentes, S., Paukshtis, E., Sugi, Y. and Licea-Claverie, A. (2000). Role of mordenite acid properties in silver cluster stabilization. Materials Science and Engineering A 276, 236-242.

Esconjauregui, S., Whelan, C.M. and Maex, K. (2009). The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47, 659-669.

Gurin, V.S., Petranovskii, V.P. and Bogdanchikova, N.E. (2002). Metal clusters and nanoparticles assembled in zeolites: an example of stable materials with controllable particle size. Materials Science and Engineering C 19, 327-331.

Gurin, V., Petranovskii, V., Hernandez, M.-A., Bogdanchikova, N. and Alexeenko, A.A. (2005). Silver and copper clusters and small particles stabilized within nanoporous silicate-based materials. Materials Science and Engineering A 391, 71-76.

Height, M.J., Howard, J.B., Tester, J.W. and Vander Sande, J.B. (2005). Carbon nanotube formation and growth via particle-particle interaction. The Journal of Physical Chemistry B 109, 12337- 12346.

Hu, Y., Griffiths, K. and Norton, P.R. (2009). Surface science studies of selective catalytic reduction of NO: Progress in the last ten years. Surface Science 603, 1740-1750.

Johnson T.V. (2009). Review of diesel emissions and control. International Journal of Engine Research 10, 275-285.

Komova, O.V., Simakov, A.V., Kovalenko, G.A., Rudina, N.A., Chuenko, T.V. and Kulikovskaya, N.A. (2007). Formation of a nickel catalyst on the surface of aluminosilicate supports for the synthesis of catalytic fibrous carbon. Kinetics and Catalysis 48, 803-811.

Lever, A.B.P. (1984). Inorganic electronic spectroscopy, 2nd edition, Elsevier, Amsterdam - New York.

Li, Y., Chen, J., Ma, Y., Zhao, J., Qin, Y. and Chang, L. (1999). Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chemical Communications 12, 1141-1142.

Liu, H., Cheng, G., Zheng, R. and Zhao, Y. (2005). Controlled growth of Ni particles on carbon nanotubes for fabrication of carbon nanotubes. Journal of Molecular Catalysis A: Chemical 225, 233-237.

MacKenzie, K.J., Dunens, O.M. and Harris, A.T. (2010). An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Industrial and Engineering Chemistry Research 49, 5323- 5338.

Martinez, C. and Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews 255, 1558-1580.

Merkulov, I.A., Meleshko, A.V., Wells, J.C., Cui, H., Merkulov, V.I., Simpson, M.L. and Lowndes, D.H. (2005). Two growth modes of graphitic carbon nanofibers with herring-bone structure. Physical Review B 72, 045409.

Mosqueda-Jiménez, B.I., Jentys, A., Seshan, K. and Lercher, J.A. (2003). Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite. Applied Catalysis B: Environmental 43, 105-115.

Parvulescu V.I., Grange P. and Delmon B. (1998). Catalytic removal of NO. Catalysis Today 46, 233-316.

Rebrov, E.V., Simakov, A.V., Sazonova, N.N. and Stoyanov, E.S. (1999). Dinitrogen formation over low-exchanged Cu-ZSM-5 in the selective reduction of NO by propane. Catalysis Letters 58, 107-118.

Rebrov, E.V., Simakov, A.V., Sazonova, N.N. and Stoyanov, E.S. (2000). Rate-determining stage in NO SCR with propane on low-exchanged Cu-ZSM-5 catalyst. Catalysis Letters 64, 129-134.

Satsuma, A., Yamada, K., Mori, T., Niwa, M., Hattori, T. and Murakami, Y. (1995). Dependence of selective reduction of NO with C3H6 on acid properties of ion-exchanged zeolites. Catalysis Letters 31, 367-375.

Sazonova, N.N., Komova, O.V., Rebrov, E.V., Simakov, A.V., Kulikovskaya, N.A., Rogov, V.A., Olikhov, R.V. and Barannik, G.V. (1997). Catalytic and adsorptive properties of Cu-ZSM- 5 catalyst synthesized by solid phase method. Reaction Kinetics and Catalysis Letters 60, 313-321.

Serp, P., Corrias, M. and Kalck P. (2003). Review. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General 253, 337-358.

Vergne, S., Berreghis, A., Tantet, J., Canaff, C., Magnoux, P., Guisnet, M., Davias, N. and Noirot, R. (1998). Reduction of NO by propene over a Cu-MFI catalyst. Investigation of the mechanism from the composition of compounds trapped in the zeolite pores. Applied Catalysis B: Environmental 18, 37-50.

Woo Lee, G., Jurng, J. and Hwang, J. (2004). Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame. Combustion and Flame 139, 167-175.

Yahiro H. and Iwamoto M. (2001). Copper ion-exchanged zeolite catalysts in de-NO(x) reaction. Applied Catalysis A-General 222, 163-181.

Ying, L.S., Salleh, M.A. B., Yusoff, H.B. M., Rashid, S.B. A. and Abd Razak, J.B. (2011). Continuous production of carbon nanotubes - A review. Journal of Industrial and Engineering Chemistry 17, 367-376.
Published
2020-04-27
How to Cite
Obeso-Estrella, R., Simakov, A., Avalos-Borja, M., Castillón, F., Lugo, E., & Petranovskii, V. (2020). Ni-MORDENITE SYSTEM: INFLUENCE OF SiO2/Al2O3 MOLAR RATIO ON THE CATALYTIC ACTIVITY IN NO REDUCTION. Revista Mexicana De Ingeniería Química, 11(3), 455-461. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1629
Section
Catalysis, kinetics and reactors