ARSENIC ADSORPTION AND DESORPTION ON SYNTETIC IRON OXYHYDROXIDES AS STUDY MODEL TO EXPLAIN ONE OF THE MECHANISMS FOR ITS LIXIVIATION FROM MINING TAILINGS

  • A. de la Pe˜na-Torres Universidad de Guanajuato
  • I. Cano-Rodr´ıguez1 Cano-Rodríguez Universidad de Guanajuato
  • A.F. Aguilera-Alvarado Universidad Autónoma de San Luis Potosí
  • Z. Gamiño-Arroyo Universidad de Guanajuato
  • F.I. Gómez-Castro Universidad de Guanajuato
  • M.P. Gutiérrez-Valtierra Universidad de Guanajuato
  • S. Soriano-Pérez Universidad Autónoma de San Luis Potosí
Keywords: arsenic, mining tailings, adsorption-desorption, iron oxyhydrates

Abstract

This work presents a study of arsenic adsorption kinetics and equilibrium on synthetic iron oxyhydrates and its extraction by bicarbonate solutions, as a model to explain the fast way for arsenic lixiviation from mining tailings by this mechanism. The arsenic adsorption on synthetic goethite and ferrihydrite showed a pseudo-first order kinetics, reaching the equilibrium in 6-7 days. The adsorption isotherms for arsenic on synthetic goethite and ferrihydrite carried out at different temperatures levels showed the same and maximum adsorption capacity of 15-18 mg/g, presented a best fit according to Langmuir Isotherm Model; 95% of arsenic adsorbed in these materials was extracted with bicarbonate solutions 0.5 M, pH 8.5 in 2 h. Approximately 25% of total arsenic present in the mine tailings was extracted by bicarbonate solutions in 6 h. The results suggest that in these tailings, there is an arsenic fraction bound to iron oxyhydrates that can be quickly lixiviated by bicarbonate solutions

References

Acero, P., Ayora, C., Torrento, C. y Nieto, J.M. (2006). The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jerosite. Geochimica et Cosmochemica Acta 70, 4130-4139.

Anawar, H.M., Akai, J. y Sakugawa, H. (2004). Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54, 753-762.

Besoain, E. (1985). Minerales de arcilla de suelos. Editorial IICA/Serie de Libros y Materiales Educativos No 60, San José, Costa Rica, pp. 643-671.

Carrillo-Chávez, A., Morton-Bermea, O., González-Partida, E., Rivas-Solorzano, H., Oesler, G., García-Meza, V. Hernández, E., Morales, P. y Cienfuegos, E. (2003). Environmental Geochemistry of the Guanajuato Mining District, Mexico. Ore Geology Reviews 23, 277-297.

DOF 2000, Norma Oficial Mexicana NOM-127- SSA1-1994. Salud Ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamiento a que debe someterse el agua para su potabilización, Secretaría de Salud, M´exico, D.F., México.

Ferguson, J.F. y Anderson, M.A. (1974). Chemical forms of arsenic in water supplies and their removal. In: Chemistry of Water Supply, Treatment and Distribution (Rubin A. J. Ed.), Ann Arbor Science, MI, U.S., pp. 137-158.

Fergusson, J. E. (1990). The heavy elements. In: Chemistry, environmental impact, and health effects. Pergamon Press, Oxford, U.S.

Kim, M.J., Nriagu, J. y Haack, S. (2000). Carbonate ions and arsenic dissolutions by groundwater. Environmental Science and Technology 34, 3094-3100.

Medel, A., Ramos, S., Avelar, F. J., Godínez, L. A. y Rodríguez, F. (2008). Caracterización de Jales Mineros y evaluación de su peligrosidad con base en su potencial de lixiviación. Revistas Científicas de América Latina y el Caribe, España y Portugal 35, 33-35.

Moore, J.N. y Luoma, S.N. (1990). Hazardous wastes from large-scale metal extraction. A case study. Environmental Science and Technology 24, 1278-1285.

Plumlee, G.S. (1999). The environmental geology of mineral deposits. In: The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques and Health Issues. (Plumlee, G. S., and Logsdon, M. J., Eds.), Pp. 71-116, Reviews in Economy Geology, Vol. 6B: Littleton, CO, Soc. Econ. Geologists, Nueva York, U.S.

Ramos-Arroyo, Y. R., Prol-ledesma, R.M., y Siebe-Grabach, C., (2004). Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México. Posibles Escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geológicas 21, 268-284.

Ramos-Arroyo, Y. R. y Siebe-Grabach, C. D. (2006), Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: estudio del caso en el Distrito de Guanajuato, México. Revista Mexicana en Ciencias Geológicas 23, 54-74.

Ramos-Arroyo, Y. R. y Siebe, C. (2007). Weathering and sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, México. Catena 71, 497-506.

Raven K. P., Amita, J. y Loeppert, R. H. (1998). Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium and Adsorption Envelopes. Environmetal Science and Technology 32, 344-349.

Reina Correa J.R., Canetti de la Cuevas D. y Álvarez Alvelaiz N. (1996). Características térmico-estructurales de goethitas desordenadas y sus propiedades eléctricas determinadas por espectroscopia de impedancias. Revista Mexicana de Física 42, 1001-1013.

Rubio-Campos, B. E., I. Cano-Aguilera, A. F. Aguilera-Alvarado, G. de la Rosa y S. Soriano-Pérez (2010). Factors controlling the release of arsenic from mining taillings, In: Environmental Toxicology III, V. Popov and C.A. Brebbia, Wessex Institute of Technology, Transactions on Ecology and the Environment, UK, 55-66.

Rubio-Campos, B.E. (2011). Tesis Doctoral en Ciencias en Ingeniería Química, Departamento de Ingeniería Química, Universidad de Guanajuato, Guanajuato, Gto., México.

Sengupta, M. (1993). Environmental impacts of mining. Monitoring, restoration and control. Lewis Publishers, Boca Raton, FL., U.S., pp. 156-157

Sparks, D.L (1989). Kinetics of Soil Chemical Processes. Academic Press, New York, U.S., pp 154-161.

Taylor, R. (1991) Some observations on the formation and transformation of iron oxides In: Soil colloids and their Associations in Aggregates, (De Boot, M.F., Hayes, M, and Herbillon, A. (Eds.), Plenum Publ., New York, U.S., pp. 85-103.

USEPA Method 3051 (1994). Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, U.S.

Van Geen A., Robertson, A.P. y Leckei, J.O. (1994). Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters. Geochimica et Cosmochemica Acta 58, 2073-2086.
Published
2020-04-29
How to Cite
de la Pe˜na-TorresA., Cano-Rodríguez, I. C.-R., Aguilera-Alvarado, A., Gamiño-Arroyo, Z., Gómez-Castro, F., Gutiérrez-Valtierra, M., & Soriano-Pérez, S. (2020). ARSENIC ADSORPTION AND DESORPTION ON SYNTETIC IRON OXYHYDROXIDES AS STUDY MODEL TO EXPLAIN ONE OF THE MECHANISMS FOR ITS LIXIVIATION FROM MINING TAILINGS. Revista Mexicana De Ingeniería Química, 11(3), 495-503. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1644
Section
Environmental Engineering

Most read articles by the same author(s)