In vitro BIOACTIVITY OF CHITOSAN/POLY(DL-LACTIDE) COMPOSITES

  • S.A. Martel-Estrada Universidad Autónoma de Ciudad Juárez
  • I. Olivas-Armendáriz
  • C.A. Martínez-Pérez Universidad Autónoma de Cd. Juárez
  • J.G. Chacón-Nava
Keywords: chitosan, poly(DL-lactide), apatite, bioactivity, thermally induced phase separation

Abstract

Porous composites scaffolds of different concentration of chitosan/ Poly(DL,lactide) were fabricated for tissue engineering applications by thermally induced phase separation and lyophilization techniques. The in vitro bioactivity evaluation of the scaffolds was carried out by analyzing the apatite layers produced on them using Simulated Body Fluid (SBF) as incubation medium. The interaction between functional groups in the composite was analyzed using differential scanning calorimetry. The apatite formation was analyzed using FTIR spectroscopy, Field Emission Scanning Electron Microscopy coupled to energydispersive electron X-ray spectroscopy and X-ray diffraction. The cumulative results obtained from IR spectra and SEM-EDS,suggest that the developed composites might have potential applications in tissue engineering

References

Becerra-Bracamontes, F., Sánchez-Díaz, J., Arellano-Ceja, J., Gónzalez-Álvarez, A. y Martínez-Ruvalcaba, A. (2009). Efecto del pH y la concentración del fosfato dibásico de sodio en las propiedades de hinchamiento de hidrogeles de quitosana. Revista Mexicana de Ingeniería Química 8, 121-126.

Duan B., Yuan X., Zhu Y., Zhang Y., Li X., Zhang Y. y Yao K. (2006). A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal 42, 2013-2022.

Huang X., Ge D. y Xu Z. (2007). Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal 43, 3710-3718.

Kokubo T. y Takadama H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27, 2907-2915.

Kong L., Gao Y., Lu G., Gong Y., Zhao N. y Zhang X.(2006). A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal 42, 3171-3179.

Leonor I., Baran E., Kawashita M., Reis R., Kokubo T. y Nakamura T. (2008). Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomaterialia 4, 1349-1359.

Lei, B., Chen, X., Wang, Y. y Zhao, N. (2009). Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Materials Letters 63, 1719-1721.

Lukito F., Xue J. y Wang J. (2005). in vitro bioactivity assessment of 70 (wt.)%SiO2-30(wt.)%CaO bioactive glasses in simulated bodyfluid. Materials Letters 59, 3267-3271.

Martel-Estrada S., Martínez-Pérez C., Chacón-Nava J., García-Casillas P. y Olivas-Armendariz I. (2010). Synthesis and thermo-physical properties of chitosan/poly(dl-lactide-coglycolide) composites prepared by thermally induced phase separation. Carbohydrate Polymers 81, 775-783.

Mohamed, K. R. y Mostafa, A. A. 2008. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science and Engineering: C 28, 1087-1099.

Niu X, Feng Q, Wang M, Gui X. y Zheng Q. (2009). in vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polymer Degradation and Stability 94, 176-182.

Olivas-Armendáriz, I., García-Casillas, P., Martínez-Villafañe, A. y Martínez-Pérez, C. 2009. Synthesis and characterization of porous chitosan-polyurethane blends. Cellular Polymers 28, 159-172.

Olivas-Armendáriz, I., García-Casillas, P., Martel-Estrada, A., Martínez-Sánchez, R., Martínez-Villafañe, A. y Martínez-Pérez, C. (2009). Preparación y caracterización de compositos de quitosana/nanotubos de carbono. Revista Mexicana de Ingeniería Química 8, 205-211.

Oliveira A., Costa S., Sousa R. y Reis R. (2009). Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions. Acta Biomaterialia 5, 1626-1638.

Rezwan, K., Chen, Q., Blaker, J. y Boccaccini, A. 2006. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413-3431.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science 31, 603-632.

Vallés A., Gallego G. y Monleón P. (2009).Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer 50, 2874-2884.

Varma H., Yokogawa Y., Espinosa F., Kawamoto Y., Nishizawa K., Nagata F. y Kameyama T. (1999). Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials 20, 879-884.

Wan Y., Wu Q., Wang S., Zhang S. y Hu Z. (2007). Mechanical properties of porous polylactide/chitosan blend membranes. Macromolecular Materials and Engineering 292, 598-607.

Wopenka B. y Pasteris J. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C 25, 131-143.

Wu, H., Wan, Y., Cao, X. y Wu, Q. (2008). Proliferation of chondrocytes on porous poly(dllactide) /chitosan scaffolds. Acta Biomaterialia 4, 76-87.

Zhang, Y., Shan, W., Li, X., Wei, J., Li, H., Ma, J. y Yan, Y. (2012). Bioactivity and cytocompatibility of dicalcium phosphate/poly(amino acid) biocomposite with degradability. Applied Surface Science 258, 2632-2638.
Published
2020-04-29
How to Cite
Martel-Estrada, S., Olivas-Armendáriz, I., Martínez-Pérez, C., & Chacón-Nava, J. (2020). In vitro BIOACTIVITY OF CHITOSAN/POLY(DL-LACTIDE) COMPOSITES. Revista Mexicana De Ingeniería Química, 11(3), 505-512. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1645

Most read articles by the same author(s)