OPERATION AND DESIGN OF A LIQUID FLUIDIZED BED CLASSIFIER FOR POLYDISPERSE SUSPENSIONS OF EQUAL-DENSITY SOLID PARTICLES THROUGH MODELING AND SIMULATION

  • A. García Universidad Católica del Norte,CICITEM
  • G. López Codelco
Keywords: suspension, fluidization, modeling, simulation, classifier, design, operation

Abstract

For polydisperse suspensions with equal-density solid particles and continuous particle size distribution, design and operation methodologies of a liquid fluidized bed classifier (LFBC) are introduced, both based on a modified version of the generalized clarifier-thickener (GCT) model presented by B¨urger, Garc´ıa, Karlsen, y Towers (2008)Computers and Chemical Engineering 32, 1181-1202. The LFBC is a special case of the GCT characterized by an upwardsdirected flow of liquid at the lower end of the unit. Moreover, a versatile way to discretize the particle size variable for the numerical solution of this equation is presented. Numerical examples illustrate the performance of the model and the eectiveness of design and operation methodologies.

References

Basson, D. K., Berres, S. and B¨urger, R. (2009). On models of polydisperse sedimentation with particle-size-specific hindered-settling factors. Applied Mathematical Modelling 33, 1815- 1835.

Berres, S., B¨urger, R., and Karlsen, K.H. (2004). Central schemes and systems of conservation laws with discontinuous coeffcients modeling gravity separation of polydisperse suspensions. Journal of Computational and Applied Mathematics 164-165, 53-80.

Burgos, R. and Concha, F. (2005). Further development of software for the design and simulation of industrial thickeners. Chemical Engineering Journal 111, 135-144

Bürger, R., García, A., Karlsen, K.H. and Towers, J.D. (2006). On an extended clarifier-thickener model with singular source and sink terms. European Journal of Applied Mathematics 17, 257-292

Bürger, R., García, A., Karlsen, K.H. and Towers, J.D. (2008). A kinematic model of continuous separation and classification of polydisperse suspensions. Computers and Chemical Engineering 32, 1181-1202.

Bürger, R., Karlsen, K.H., Risebro, N.H. and Towers, J.D. (2004). Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifierthickener units. Numerische Mathematik 97, 25-65.

Castilho, L.R. and Medronho, R.A. (2000). A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones. Minerals Engineering 13, 183-191.

Chancelier, J.P., Cohen de Lara, M., Joannis, C. and Pacard, F. (1997). New insights in dynamic modeling of a secondary settler I. Flux theory and steady-states analysis. Water Research 31, 1847-1856.

Chen, A., Grace, J.R., Epstein, N. and Lim, C.J. (2002a). Steady state dispersion of monosize, binary and multi-size particles in a liquid fluidized bed classifier. Chemical Engineering Science 57, 991-1002.

Chen, A., Grace, J.R., Epstein, N. and Lim, C.J. (2002b). Unsteady state hydrodynamic model and dynamic behavior of a liquid fluidized-bed classifier. Chemical Engineering Science 57, 1003-1010.

Concha, F. and Barrientos, A. (1993). A critical review of thickener design methods. KONA Powder and Particle Journal 11, 79-104.

Delgadillo, J.A. and Rajamani, R.K. (2005a). A comparative study of three turbulenceclosure models for the hydrocyclone problem. International Journal of Mineral Processing 77, 217-230.

Delgadillo, J.A. and Rajamani, R.K. (2005b). Hydrocyclone modeling: large-eddy simulation CFD approach. Minerals and Metallurgical Processing 22, 225-232.

Delgadillo, J.A. and Rajamani, R.K. (2007). Exploration of hydrocyclone designs using computational fluid dynamics. International Journal of Mineral Processing 84, 252-261.

Diehl, S. (2006). Operating charts for continuous sedimentation III: Control of step input. Journal of Engineering Mathematics 54, 225-259.

Garrido, P., Burgos, R., Concha, F. and Bürger, R. (2003). Software for the design and simulation of gravity thickeners. Minerals Engineering 16, 85-92.

Garside, J. and Al-Dibouni, M. R. (1977). Velocityvoidage relationship for fluidization and sedimentation in solid-liquid system. Industrial & Engineering Chemistry Process Design and Development 16, 206-214.

Greenspan, H.P. and Ungarish, M. (1982). On hindered settling of particles of dierent sizes. International Journal of Multiphase Flow 8, 587-604.

Hassett, N.J. (1958). Design and operation of continuous thickeners. Industrial Chemist 34, 116-120, 169-172, 489-494.

Hassett, N.J. (1968). Thickening in theory and practice. Minerals Science and Engineering 1, 24-40.

Kahane, R., Nguyen, T. and Schwarz, M.P. (2002). CFD modelling of thickeners atWorsley Alumina Pty Ltd. Applied Mathematical Modelling 26, 281-296.

Kim, B.H. and Klima, M.S. (2004). Development and application of a dynamic model for hindered-settling column separations. Minerals Engineering 17, 403-410.

Kraipech, W., Chen, W., Dyakowski, T. and Nowakowski, A. (2006). The performance of the empirical models on industrial hydrocyclone design. International Journal of Mineral Processing 80, 100-115.

Kunii, D. and Levenspiel, O. (1991). Fluidization Engineering. 2nd edition. Butterworth- Heinemann, Jordan Hill, UK.

Kurganov, A. and Tadmor, E. (2000). New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. Journal of Computational Physics 160, 241-282.

Kynch, G.J. (1952). A theory of sedimentation. Transactions of the Faraday Society 48, 166-176.

Lev, O., Rubin, E. and Sheintuch, M. (1986). Steady state analysis of a continuous clarifier-thickener system. AIChE Journal 32, 1516-1525.

Lockett, M.J. and Bassoon, K.S. (1979). Sedimentation of binary particle mixtures. Powder Technology 24, 1-7.

Martin, A. D. (2004). Optimization of clarifierthickeners processing stable suspensions for turn-up/turn-down. Water Research 38, 1568-1578.

Masliyah, J.H. (1979). Hindered settling in a multiple-species particle system. Chemical Engineering Science 34, 1166-1168.

Mitsutani, K., Grace, J.R. and Lim, C.J. (2005). Residence time distribution of particles in a continuous liquid-solid classifier. Chemical Engineering Science 60, 2703-2713.

Moncrieff, A.G. (1963/64). Theory of thickener design based on batch sedimentation tests. Transactions of the Institution of Mining and Metallurgy 73, 729-759.

Nasr-El-Din, H., Masliyah, J.H. and Nandakumar, K. (1990). Continuous gravity separation of concentrated bidisperse suspensions in a vertical column. Chemical Engineering Science 45, 849-857.

Nasr-El-Din, H., Masliyah, J.H. and Nandakumar, K. (1999). Continuous separation of suspensions containing light and heavy particle species. Canadian Journal of Chemical Engineering 77, 1003-1012.

Nasr-El-Din, H., Masliyah, J.H., Nandakumar, K. and Law, D.H.-S. (1988). Continuous gravity separation of a bidisperse suspension in a vertical column. Chemical Engineering Science 43, 3225-3234.

Olson, T.J. and Van Ommen, R. (2004). Optimizing hydrocyclone design using advanced CFD model. Minerals Engineering 17, 713-720.

Qian, S., Bürger, R. and Bau, H.H. (2005). Analysis of sedimentation biodetectors. Chemical Engineering Science 60, 2585-2598.

Richardson, J.F. and Zaki, W.N. (1954). Sedimentation and fluidization: Part I. Transactions of the Institution of Chemical Engineers (London) 32, 35-53.

Schubert, H. (1998). Zur Auslegung von Schwerkrafteindickern/On the design of thickeners. Aufbereitungs-technik 39, 593-606.

Slack, M.D., Del Porte, S. and Engelman, M.S. (2003). Designing auto- mated computational fluid dynamics modeling tools for hydrocyclone design. Minerals Engineering 17, 705-711.

Spannenberg, A., Galvin, K., Raven, J. and Scarboro, M. (1996). Continuous differential sedimentation of a binary suspension. Chemical Engineering in Australia 21, 7-11.

Talmage, W.P. and Fitch, E.B. (1955). Determining thickener unit areas. Industrial and Engineering Chemistry 47, 38-41.

Waters, A.G. and Galvin, K.P. (1991). Theory and application of thickener design. Filtration and Separation 28, 110-116.

Wilhelm, J.H. and Naide, Y. (1981). Sizing and operation of continuous thickeners. Minerals Engineering 33, 1710-1718.

Yong, K., Xiaomin, H., Changlie, D. and Qian, L. (1996). Determining thickener underflow concentration and unit area. The Transactions of Nonferrous Metals Society of China 6, 29-35.

Zeidan, A., Rohani, S. and Bassi, A. (2004). Dynamic and steady-state sedimentation of polydisperse suspension and prediction of outlets particle-size distribution. Chemical Engineering Science 59, 2619-2632.
Published
2020-04-29
How to Cite
García, A., & López, G. (2020). OPERATION AND DESIGN OF A LIQUID FLUIDIZED BED CLASSIFIER FOR POLYDISPERSE SUSPENSIONS OF EQUAL-DENSITY SOLID PARTICLES THROUGH MODELING AND SIMULATION. Revista Mexicana De Ingeniería Química, 11(3), 513-532. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1646
Section
Simulation and control