• E. E. Hernández-Martínez
  • F.J. Valdés-Parada
  • J. Alvarez-Ramírez
Keywords: reaction-transport system, Green's function, numerical solution


Integral equation formulations are methodologies that consists on transforming the differential operators into integral operators exactly incorporating the boundary conditions. This work extends the use of integral equations formulations (IEF) for the development of numerical schemes for generalized reaction-diffusion systems. Due to the property of exact incorporation of the boundary conditions, the numerical schemes resulting do not require approximations at the boundaries, which leads to numerical schemes with global orders approximation O(h2). IEF schemes are characterized by their systematic methodology and its their mathematical structure that allows easy physical interpretation of the processes involved in the reaction-diffusion systems. To evaluate the ability of numerical approximation of the proposed scheme different conditions that arise in the study of catalytic pellets were considered. The numerical simulations carried out show that the IEF exhibit better numerical approximations thanclassic finite differences schemes (FD).


Aris, R. (1975). The mathematical theory of difusion and reaction in permeable catalysts, Vol. I. Clanderdon Press, Oxford. Barrer, R.M. (1945). Measurement of difusion and thermal conductivity constants in nonhomogeneous media, and in media where these constants depend respectively on concentration or temperature. Proceedings of the Physics Society 58, 321-331.

Benson, D. L., Sherratt, J. A. y Maini, P. K. (2008). Difusion driven instability in an inhomogeneous domain. Bulletin of Mathematical Biology 1992, 55(2), 365-384.

Burghardt, A. y Kubaczka, A. (1996). Generalization of the effectiveness factor for any shape of a catalyst pellet, Chemical Engineering Progress 35, 65-74.

Dixit, R.S. y Tavlarides, L. (1982). Integral Method of analysis of Fischer-Tropsch synthesis reactions in a catalyst pellets. Chemical Engineering Science 37, 539-544

Duffin, R.J. y Mcwhirter, J.H. (1974). An Integral Equation Formulation of Maxwell’s Equations. J. of The Franklin Institute 298 (5), 385-394.

Greenberg M. D. (1971). Applications of Green’s Functions in Science and Engineering. Prentice Hall, New York

Haberman, R. (2004). Applied Partials Derivatives Equations with Fourier series and boundary problems. New Jersey, Prentice Hall, USA Hernandez-Martinez, E., Valdés-Parada, F.J. y Alvarez-Ramirez, J. (2011). A Green's Function Formulation of Nonlocal Finite- Differences Schemes for Reaction-Diffusion Equations. Journal of Computational and Applied Mathematics 235, 3096-3103.

Janicki, M., De-Mey G. y Napieralski, A. (2002). Application of Green's functions for analysis of transient thermal states in electronic circuits.Microelectronics Journal 33, 733-738

Kadanoff, L.P. y Baym G. (1962). Quantum statistical mechanics: Green’s function methods in equilibrium and nonequilibrium problems. Benjamin, New York.

Kesten, A.S. (1969). An integral equation method for evaluating the effects of film and pore diffusion of heat and mass on reaction rates in porous catalyst particles. AICHE Journal 15, 128-131

Maini, P.K., Benson, D. L. y Sherratt, J. (1992). Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. Journal of Mathematics Applied in Medicine and Biology 9, 197-213.

MansurW.J., Vasconcellos C.A., Zambrozuski N.J. y Rotunno O.C. (2009). Numerical solutions for linear transcient heat conduction equation using an explicit Green’s approach. International Journal of Heat and Mass Transfer 52, 694-701.

Onyejekwe, O. (2002). Green element solutions of nonlinear diffusion-reaction model. Computers and Chememical Engineering 26, 423-427.

Othmer, H.G. y Pate, E. (1980). Scale-invariance in reaction-diffusion models of spatial pattern formation. Procedings of the National Academy of Sciences 77, 4180-4184.

Page, K.M., Maini, P. y Monk A.M. (2005). Complex pattern formation in reaction diffusion systems with spatially varying parameters. Physica D 202, 95-115.

Pan L. (1997). Boundary element strategies and discretized Green's functions: applications in composite materials and wave mechanics. phD thesis, Iowa, USA.

Papadias, D., Edsberg, L. y Bj¨ornbom, P. (2000). Simplified method of effectiveness factor calculations for irregular geometries of washcoats: A general case in a 3D concentration field. Catalyst Today 60, 11-20.

Schnackenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. Journal Theorical Biology 81, 389-400

Segel, L.A. y Jackson, J.L. (1972). Dissipative structure: an explanation and an ecological example. Journal Theorical Biology 37, 545-559.

Valdés-Parada, F.J., Alvarez-Ramirez, J. y Ochoa-Tapia, J.A (2007a). Analisis de problemas de transporte de masa y reacción mediante funciones de Green. Revista Mexicana de Ingenería Química 6(3), 283-294.

Valdés-Parada, F.J., Ochoa-Tapia, J.A y Alvarez-Ramirez, J. (2007b). Diffusive mass transport in the fluid-porous medium inter-region: Closure problem solution for the one-domain approach. Chemical Engineering Science 62, 6054-6068.

Valdés-Parada, F.J., Sales-Cruz, M., Ochoa-Tapia, J.A. y Alvarez-Ramirez, J. (2008). On Green's function methods to solve nonlinear reaction diffusion systems. Computer and Chemical Engineering 32, 503-511.

Valdés-Parada, F.J. (2010). Formulaci´on integral para la solución de problemas de cerradura en procesos de escalamiento. Revista Mexicana de Ingenería Química 9(1), 53-66.

Wapenaar, K. (2004). Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters 93, 254301.
How to Cite
E. Hernández-Martínez, E., Valdés-Parada, F., & Alvarez-Ramírez, J. (2020). INTEGRAL FORMULATIONS FOR GENERALIZED REACTION-DIFFUSION EQUATIONS. Revista Mexicana De Ingeniería Química, 10(3), 363-373. Retrieved from
Transport phenomena

Most read articles by the same author(s)

1 2 > >>