BIOACTIVE PEPTIDES RELEASED BY LACTIC ACID BACTERIA IN COMMERCIAL FERMENTED MILKS

  • L.G. Gonzalez-Olivares Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • J. Jiménez-Guzmán Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • A. Cruz-Guerrero Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • G. Rodríguez-Serrano Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • L. Gómez-Ruiz Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • M. García-Garibay Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
Keywords: fermented milks, bioactive peptides, antihypertensive effect, lactic acid bacteria

Abstract

The aim of this study was to evaluate the release of bioactive peptides encrypted in milk proteins by proteolytic activity of lactic acid bacteria in commercial fermented milks in refrigerated storage. Peptide concentration varied from 0.05 mg / ml in LF-3 (Lactobacillus casei) and LF-4 (Lactobacillus acidophilus) to 0.227 mg / ml in LF5 (Lactobacillus casei and S. thermophilus) and LF-1 (Lactobacillus casei) after 10 days of storage, when the maximum concentration was reached. During refrigerated storage, all samples presented peptides with molecular weight lower than 14.4 kDa. The fermented milk LF-2 (Lactobacillus acidophilus y Streptococcus thermophilus) had the highest variety of peptides, and even peptides lower than 1.4 kDa were found, some of them with aromatic amino acids, which are present in the primary structure of antihypertensive peptides. These results suggest that the concentration and diversity of peptides depends on microorganism in the fermented milk. Peptides molecular weights were compared with those reported in literature for bioactive peptides, finding similarities, thus increasing the expectations to have peptides with physiological importance in fermented milks.

References

Akpemado, K.M. y Bracquart, P.A. (1983). Uptake of branched-chain amino acids by Streptococcus thermophilus. Applied and Environmental Microbiology 45, 136-140.

Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F. y Cushman, D. W. (1980). Binding of peptides substrates and inhibitors of angiotensin-converting enzyme. Journal of Biological Chemistry 255, 401-407.

Clare, D. A. y Swaisgood, H.E. (2000). Bioactive milk peptides: a prospectus. Journal of Dairy Science 83, 1187-1195.

Contreras, M., Carrón, R., Montero, M.J., Ramos, M. y Recio, I. (2009). Novel-casein derived peptides with antihypertensive activity. International Dairy Journal 19, 566-573.

Creighton, T.E. (1990). Protein folding. Biochemistry Journal 270, 1-16.

Dave, R.I. y Shah, N.P. (1998). Ingredient supplementation effects on viability of probiotic bacteria in yogurt. Journal of Dairy Science 81, 2804-2816.

Fernández-Espla, M.D. y Rul, F. (1999). PepS from Streptococcus thermophilus a new member of the aminopeptidases family of thermophilic bacteria. European Journal of Biochemistry 263, 502-510.

Figueroa-Gonzalez, I., Hernández-Sánchez, H., Rodríguez-Serrano G., Gómez-Ruiz L., García-Garibay M. y Cruz-Guerrero A. (2010). Antimicrobial effect of Lactobacillus casei strain Shirota co-cultivated with Escherichia coli UAM0403. Revista Mexicana de Ingeniería Química 9, 11-16.

Fitzgerald, R. y Murray, B. A. (2006). Bioactive peptides and lactic fermentations. International Journal of Dairy Technology 59, 118-125.

Fujita, H., Yokoyama, K. y Yoshikawa, M. (2000). Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. Journal of Food Science 65, 564-569.

Garault, P., Letort, C., Juillard, V. y Monnet, V. (2000). Branched-chain amino acid biosynthesis essential for optimal growth of Streptococcus thermophilus in milk. Applied and Environmental Microbiology 66, 5128- 5133.

Garault, P., Letort, C., Juillard, V. y Monnet, V. (2001). La biosynthese des acides aminés a chaíne branchee et des purines: deux voies essentielle pour une croissance optimale de Streptococcus thermophilus dans le lait. Lait 81, 83-90.

Gomes, A.M.P., Malcata F.X. y Klaver, F.A.M. (1998). Growth enhancement of Bifidobacterium lactis B0 and Lactobacillus acidophilus by milk hydrolysates. Journal of Dairy Science 81, 2817-2825.

Hernández, D., Cardell, E. y Zarate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology 99, 77-84.

Hernández-Ledezma, B., Amigo, L., Ramos, M. y Recio, I. (2004). Angiotensin converting enzyme inhibitory activity in commercial fermented products formation of peptides under simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry 52, 1504- 1510.

Hernández-Ledezma, B., Miralles, B., Amigo, L., Ramos, M. y Recio, I. (2005). Identification of antioxidant and ACE-inhibitory peptides in fermented milk. Journal of the Science of Food and Agriculture 85, 1041-1048.

Jiménez-Guzmán J., Cruz-Guerrero A., Rodríguez-Serrano G., López-Munguía A., Gómez-Ruiz L. y García-Garibay, M. (2002). Enhancement of lactase activity in milk by reactive sulfhydryl groups induced by heat treatment. Journal of Dairy Science 85, 2497-2502.

Juillard, V., Laan, H., Kunji, E. R. S., JeronimusStratingh, C. M., Bruins, A. P. y Konings, W. N. (1995). The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. Journal of Bacteriology 177, 3472-3478.

Juille, O., Le Bars, D. y Juillard, V. (2005). The specificity of oligopeptide transport by Streptococcus thermophilusresembles that of Lactococcus lactis and not that of pathogenic streptococci. Microbiology 151, 1987-1994.

Kawase, M., Hashimoto, H., Hosoda, M., Morita, H. y Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. Journal of Dairy Science 83, 255-263.

Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods 1, 177-187

Korhonen, H. y Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal 16, 945-960.

Kunji, E. R. S., Mierau, I., Hagting, A., Poolman, B. y Konings, W. N. (1996). The proteolytic systems of lactic acid bacteria. Antonie van Leewenhoek 70, 187-221.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

LeBlanc, J. G., Matar, C., Valdéz, J. C. Leblanc, J. y Perdigon, G. (2002). Immunomodulatory effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science 85, 2733-2742.

LeBlanc, A. D., Matar, C., LeBlanc, N. y Perdigon, G. (2005) Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Research 7, R477-R486.

Leroy, F. y De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15, 67-78.

Letort, C. y Juillard, V. (2001). Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology 91,1023-1029.

Letort, C., Nardi, M., Garault, P., Monnet, V. y Juillard V. (2002). Casein utilization by Streptococcus thermophilusresults in a diauxic growth in milk. Applied and Environmental Microbiology 68, 3162-3165.

Lorenzen, P. C. y Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. International Journal of Dairy Technology 58, 119-124.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. y Randall, R.J. (1951). Protein measurement with the Folin-Phenol reagents. Journal of Biological Chemistry 193, 265-275.

Matsumura, N., Fujii, M., Takeda, Y., Sugita, K. y Shimizu, T. (1993) Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels. Bioscience Biotechnology and Biochemistry 57, 1743-1744.

Meisel, H. (1998). Overview on milk protein-derived peptides. International Dairy Journal 8, 363- 373.

Meisel, H. (2001). Bioactive peptides from milk proteins: a perspective for consumers and producers. The Australian Journal of Dairy Technology 56, 83-92.

Meisel, H. y Bockelmann, W. (1999). Bioactive peptides encrypted in milk proteins: proteolytic activation and tropho-functional properties. Antonie van Leeuwenhoek 76, 297-215.

Mierau, I., Kunji, E. R. S., Venema, G. y Kok, J. (1997). Casein and peptide degradation in lactic acid bacteria. Biotechnology and Genetic Engineering Reviews 14, 279-301.

Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., Tanaka, H. y Maruyama, S. (1991). Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agricultural and Biological Chemistry 55, 1313- 318.

Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T. y Yura, T. (1981). Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. Journal of Bacteriology 148, 64-71.

Nielsen, M., Martinussen, T., Flambard, B., Sorensen, K. y Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation, ph and storage time. International Dairy Journal 19, 155-165.

Nighswonger, B.D., Brashears, M. M. y Gilliland, S. E. (1996). Viability of Lactobcillus acidophilus and Lactobacillus casei in fermented milk products during refrigerated storage. Journal of Dairy Science 79, 212-219.

Phelan, M., Aherne, A., Fitzgerald, R. y O’Brien, N. (2009). Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal 19, 643-654.

Poolman, B., Kunji, E.R.S., Hagting, A., Juilliard, V. y Konings, W. N. (1995). The proteolytic pathway of Lactococcus lactis. Journal of Applied Bacteriology Symposium Supplement 79, 65S-75S.

Quirós, A., Hernández-Ledezma, B., Ramos, M., Amigo, L. y Recio, I. (2005). Angiotensinconverting enzyme inhibitory activity of peptides derived from caprine kefir. Journal of Dairy Science 88, 3480-3487.

Ramchandran, L. y Shah, N.P. (2008). Proteolytic profiles and angiotensin-I converting enzyme and α-glucosidase inhibitory activities of selected lactic acid bacteria. Journal of Food Science 73, M75-M81.

Robert, M.C., Razaname, A., Mutter, M. y Juillerat, M.A. (2004). Identification of angiotensin-Iconverting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. Journal of Agricultural and Food Chemistry 52, 6923- 6931.

Rokka, T., Syvaoja, E. L., Tuominen, J. y Korhonen, H. (1997). Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft 52, 675-678.

Rul, F. y Monnet, V. (1997). Presence of additional peptidases in Streptococcus thermophilusCNRZ 302 compared to Lactococcus lactis. Journal of Applied Microbiology 82, 695-704.

Schägger, H. y von Jagow, G. (1987). Tricine-sodium-dodecyl sulfate-polyacrilamide gel electroforesis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166, 368-379.

Schanbacher, F. L., Talhouk, R.S. y Murray, F.A. (1997). Biology and origin of bioactive peptides in milk. Livestock Production Science 50, 105- 123.

Senok, C.A., Ismaeel, Y. A. y Botta, G.A. (2005). Probiotics: facts and myths. Clinical Microbiology and Infection 11, 958-966.

Shihata, A. y Shah, N. P. (2000). Proteolytic profiles of yogurt and probiotic bacteria. International Dairy Journal 10, 401-408.

Simmering, R. y Blaut, M. (2001). Pro- and prebiotics- the tasty guardian angels? Applied Microbiology and Biotechnology 55, 19-28.

Vasiljevic, T. y Shah, N. P. (2008). Probiotics -From Metchnikoff to bioactives. International Dairy Journal 18, 714-728.

Vinderola, C.G., Mocchiutti, P. y Reinheimer, J. A. (2002). Interactions among lactic acid started and probiotic bacteria used for ferment dairy products. Journal of Dairy Science 85, 721-729.
Published
2020-05-05
How to Cite
Gonzalez-Olivares, L., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., & García-Garibay, M. (2020). BIOACTIVE PEPTIDES RELEASED BY LACTIC ACID BACTERIA IN COMMERCIAL FERMENTED MILKS. Revista Mexicana De Ingeniería Química, 10(2), 179-188. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1661
Section
Biotechnology

Most read articles by the same author(s)