• M.X. Quintanilla-Carvajal Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • L.S. Meraz-Torres Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • L. Alamilla-Beltrán Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • J.J. Chanona-Pérez Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • E. Terres-Rojas Instituto Mexicano de Petróleo, Laboratorio de Microscopia Electrónica de Barrido Ambiental
  • H. Hernández-Sánchez Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • A.R. Jiménez-Aparicio Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional
  • G.F. Gutiérrez-López Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
Keywords: morphometric parameters, spray drying, image analysis, alpha tocopherol


Microcapsules were obtained by spray-drying of α-tocopherol (AT) - in- water emulsions subjected to single and double atomization yielding single atomized microcapsules (SAM) and double atomized microcapsules (DAM) which had different core to wall material ratios. Micrographs of whole and AT extracted of SAM and DAM obtained from Environmental Scanning Electron Microscopy (ESEM) were image analyzed and the Feret diameter, projected area, perimeter, maximum perimeter, shape factor and Fractal Dimension of contour (FDc) and texture (FDt) were determined. Whole DAM presented higher FDc and FDt than SAM, while SAM presented higher FDc values for all the microcapsules and higher DFt values for the AT to wall materials ratios 1:4 after the AT extraction. Most of the microcapsules displayed significantly different perimeter but non- significant projected areas, whereas the extracted microcapsules tended not to show significant differences between these two parameters.


Aguilera, J.M. (2007). Microstructure and food product engineering. Food Technology 54(11), 56-65.

Barleita, B.J. and Barbosa-Canovas, G. (1993). Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science 58(5), 1030-1046.

Bellouti, M., Alves, M.M., Novais, J.M. and Mota, M. (1997). Flocs vs. granules: differentiation by fractal dimension. Water Research 31(5), 1227- 1231.

Burrough, P.A. (1986). Principles of geographical systems for land resources assessment. In: Principles of Geographical Information Systems for land resources assessment. Pp. 193. Clarendon Press, Oxford.

Champagne, P. and Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology 18,184-190.

Chanona-Pérez, J., Quevedo, R., Jiménez-Aparicio, A.R., Gumeta-Chávez, C., Mendoza-Pérez, J.A., Calderón-Domínguez, G., Alamilla-Beltran, L. and Gutiérrez-López, G.F. (2008). Image processing methods and fractal analysis for quantitative evaluation of size, shape, structure and microstructure in food materials. In: Food Engineering Integrated Approaches, (G. F. Gutierrez-Lopez, G. V. Barbosa-Canovas. J. Welti-Chanes, E. Parada-Arias, eds.), Pp. 277-285. Springer.

Chen, W., Yuan, S., Hsiao, H. and Hsieh, C. (2003). Algorithms to estimating fractal dimension of texture images. IEEE International Conference on Acoustics, Speech and Signal Processing 3,1541-1544.

Drusch, S. and Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: Localization, determination and impact on oxidative stability. Food Chemistry 109(1),17- 24.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40, 1107-1121.

Jiménez, J.C., Salcedo, M.G., Martínez, B.B., Chanona, P.J., Alamilla, B.L., Arenas, O.M., Gutiérrez, L.G. y Jiménez, A.R. 2005. Naturaleza fractal de células en suspensión de Beta vulgaris L., sometidas a un proceso de permeabilización. Biótica 2, 39-53.

Kim, E., Dong, D. and Pearce, D. (2003). On the mechanisms of surface formation and the surface compositions of industrial milk powders. Drying Technology 21, 265-278. Kim, E.H.-J., Chen, X.D. and Pearce, D. (2009). Surface composition of industrial spray-dried milk powders. 3. Changes in the surface composition during long-term storage. Journal of Food Engineering 94, 182-191

Klaypradit, W. and Huang, Y. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT -Food Science and Technology 41, 1113- 1139.

Lekago, J. and Dunford, N. L. (2010). Effect of Spray Nozzle Design on Fish Oil-Whey Protein Microcapsule Properties. Journal of Food Science 75(6), E94-E97.

Martins, P. and Kieckbusch, T. (2008). Influence of lipid phase on steam jet agglomeration of maltodextrin powders. Powder Technology 185, 258-266.

Mery, D. and Pedreschi, F. (2005) Segmentation of colour food images using a robust algorithm. Journal of Food Engineering 66, 353-360.

Murillo-Martínez, M.M., Pedroza-Islas, R., Lobato-Calleros, C., Martínez-Ferez, A. and VernonCarter, E.J. (2011). Designing W1/O/W2 double emulsions stabilized by protein polysaccharide complexes for producing edible films: Rheological, mechanical and water vapour properties. Food Hydrocolloids 25, 577- 585.

Pedreschi, F., Mery, D., Mendoza, F. and Aguilera, J.M. (2004). Classification of potato chips using pattern recognition. Journal of Food Science 69, E1-E7.

Perea-Flores, M.J., Chanona-Perez, J.J., Terres-Rojas, E., Calderon-Dominguez, G., Garibay-Febles, V., Alamilla-Beltran, L. and Gutierrez-Lopez, G.F. (2010) Microstructure structure characterization of milk powders and their relationship with rehydration properties. In: Spray Drying Technology, (M.W. Woo, A.S. Mujumdar y W.R.W Dau, eds.), Pp 197-219. Editorial Transport Processes Research (TPR), Singapore.

Perez-Alonso, C., Cruz-Olivares, J., Barrera- Pichardo, J., Rodríguez-Huezo, M., Báez-Gonzalez, J. and Vernon-Carter, E. (2008). DSC thermo-oxidative stability of red chili oleoresin microencapsulated in blended biopolymers matrices. Journal of Food Engineering 85, 613- 624.

Pérez-Alonso, C., Fabela-Morón, M.F., Guadarrama-Lezama, A.Y., Barrera-Pichardo, J. F., Alamilla-Beltrán, L. and Rodríguez-Huezo, M.E. 2009. Interrelationship between the structural features and rehydration properties of spray dried manzano chilli sauce microcapsules. Revista Mexicana de Ingeniería Química 8(2),187-196.

Pitalua, E., Jimenez, M., Vernon-Carter, E.J. and Beristain, C.I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum arabic as wall material. Food and Bioproducts Processing 88, 253-258.

Pulido, A. and Beristain, C.I. 2010. Spray dried encapsulation of ascorbic acid using chitosan as wall material. Revista Mexicana de Ingeniería Química 9(2), 189-195.

Tapia-Ochoategui, A.P., Camacho-Díaz, B.H., Perea-Flores, M.J., Ordoñez-Ruiz, I.M., Gutiérrez-López, G.F. and Dávila-Ortiz, G. 2011. Morfometric changes during the traditional curing process of vanilla pods (Vanilla planifolia; Orchidaceae) in Mexico. Revista Mexicana de Ingeniería Química 10(1), 105- 115.

Vega, C. and Roos, Y.H. (2006). Invited review: spray-dried dairy and dairy-like emulsions compositional. Journal of Dairy Science 89(2), 383-401.

Vignolles, M. L., Lopez, C., Madec, M. N., Ehrhardt, J. J. Méjean, S., Schuck, P. and Jeantet, R. (2009). Fat properties during homogenization, spray-drying, and storage affect the physical properties of dairy powders. Journal of Dairy Science 92, 58-70.

Woo, M.W., Mujumdar, A.S. and Dau, W.R.W. (2010). Spray Drying Technology. Editorial Transport Processes Research (TPR), Singapore.

Ye, X., Fernando, S., Wilson, W. and Singh, A. (2007). Application of amphiphilic catalysts, ultrasonication, and nanoemulsions for biodiesel production process. Chemical Engineering and Technology 30(11), 1481 - 1487.
How to Cite
Quintanilla-Carvajal, M., Meraz-Torres, L., Alamilla-Beltrán, L., Chanona-Pérez, J., Terres-Rojas, E., Hernández-Sánchez, H., Jiménez-Aparicio, A., & Gutiérrez-López, G. (2020). MORPHOMETRIC CHARACTERIZATION OF SPRAY-DRIED MICROCAPSULES BEFORE AND AFTER α-TOCOPHEROL EXTRACTION. Revista Mexicana De Ingeniería Química, 10(2), 301-312. Retrieved from
Food Engineering

Most read articles by the same author(s)