• L. Buendía-González Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa
  • J. Orozco-Villafuerte Facultad de Química, Universidad Autónoma del Estado de México
  • M. E. Estrada-Zúñiga Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa
  • C. E. Barrera Díaz Facultad de Química, Universidad Autónoma del Estado de México
  • E. J. Vernon-Carter Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa
  • F. Cruz-Sosa Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa
Keywords: Prosopis laevigata, phytoremediation, bioaccumulation, heavy metals, in vitro culture


The growth, survival and Pb(II) and Ni(II) uptake of Prosopis laevigata seedlings were determined in order to evaluate their bioaccumulation capability. The seedlings were cultured during 50 days on modified Murashige and Skoog medium supplemented with 10 g.l−1 of sucrose, 0.0, 0.32, 0.63, 1.26, 2.10, 4.20 mM Ni(II), and 0.0, 0.23, 0.45, 0.90, 1.50, 3.0 mM Pb(II). None of the studied heavy metals avoided germination; however, both produced smaller plants with fewer leaves and secondary roots. Seedlings showed an accumulation of 2 582 and 3 895 mg Ni kg−1, and of 27 300 and 40 666 mg Pb kg−1, both in dry basis (d.b.), in shoot and root, when cultured with 1.26 mM Ni and 3.0 mM Pb, respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor for Ni superior to 32 and for Pb over 21 was exhibited by the seedlings, so that P. laevigata can be considered as a viable accumulator species of Pb(II) and Ni(II) for phytoremediation purposes.


Akkenson, B. and Skerfing, S. (1985). Exposure in welding high nickel alloy. International Archives of Occupational and Environmental Health 56, 111-117.

Aldrich, M.V., Ellzey, J.T., Peralta-Videa, J.R., Gonzalez, J.H. and Gardea-Torresdey, J.L. (2004). Lead uptake and the effects of EDTA on lead-tissue concentrations in the desert species mesquite (Prosopis spp.) International Journal of Phytoremediation 6, 195- 207.

ATSDR, (2005). ToxFAQsTM for Nickel; Agency for Toxic Substances and Disease Registry,

Baker, A.J.M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643-654.

Baker, A.J.M. (1987). Metal tolerance. New Phytologist 106, 93-111.

Baker, A.J.M., McGrath, S.P., Reeves, R.D. and Smith, J.A.C. (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water, (N. Terry and G. Bañuelos, eds.), Pp. 85- 107. Lewis Publishers, Boca Raton, FL.

Blaylock, M., Salt, D., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. and Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology 31, 860-865.

Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Chávez-Ávila, V.M. and Vernon-Carter, E.J. (2007). Clonal propagation of mesquite tree (Prosopis laevigata Humb. & Bonpl. ex Willd. M.C. Johnston). I. Via cotyledonary nodes. In Vitro Cellular and Developmental Biology-Plant 43, 260- 266.

Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C.E. and Vernon-Carter, E.J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, doi:10.1016/j.biortech.2010.03.027.

Carrillo-Castñeda, G., Juárez Muños, J., Peralta-Videa, J.R., Gomez, E., DuarteGardea, M., Tiemann, K.J. and GardeaTorresdey, J.L. (2002). Alfalfa growth promotion by bacteria growth under iron limiting conditions. Advances in Environmental Research 6, 391-399.

Davies, J. (1986). Occupational asthma caused by nickel salts. Journal of the Society of Occupational Medicine 36, 29-31.

Doran, P.M. (2009). Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnology and Bioengineering 103, 60-76.

EPA (2009). Lead in paint, dust, and soil, U.S. Environmental Protection Agency. http://

Frankenberger, W.T. (2002). Preface. In: Environmental chemistry of arsenic (W.T. Frankenberger, ed.) Marcel Dekker, New York.

George, E.F. and de Klerk, G.J. (2008). The components of plant tissue culture media I: macro- and micro-nutrients. In: Plant propagation by tissue culture, (E.F. George, Klerk, and M.A. Hall, eds.). Pp. 65- 113. Springer, Dordrecht, The Netherlands.

Huang, J., Chen, J., Berti, W. and Cunningham, S. (1997). Phytoremediation of lead-contami-nated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology 31, 800-805.

Johnson, D. and Hale, B. (2004). White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environmental Pollution 127, 65-72.

Jonak, C., Nakagami, H. and Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology 136, 3276-3283.

Kukier, U. and Chaney, R.L. (2004). In situ remediation of nickel phytotoxicity for different plant species. Journal of Plant Nutrition 27, 465-495.

Kumar, P.B.A.N., Dushenkov, V., Motto, H. and Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science and Technology 29, 1232-1238.

Lupankwa, K., Love, D., Mapani, B.S. and Mseka, S. (2004). Impact of a base metal slimes dam on water systemms, Madziwa Mine, Zimbabwe. Physics and Chemistry of the Earth 29, 1145-1151.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Niu, Z.X., Sun, L.N., Sun, T.H., Li, Y.S. and Wang, H. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Science 19, 961-967.

Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J.L. and Murphy, A.S. (2005). Phytoremediation and hyperaccumulator plants. In: Topics in current genetics, Vol. 14: Molecular biology of metal homeostasis and detoxification, (M.J. Tamás and E. Martinoia, eds.), Pp. 299-340. Springer-Verlag, Berlin.

Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E. and Parsons, J.G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L). Bulletin of Environmental Contamination and Toxicology 66, 727-734.

Peralta-Videa, J.R., de la Rosa, G., González, J.H. and Gardea-Torresdey, J.L. (2004). Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research 8, 679-685.

Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology 56, 15-39.

Reeves, R.D. and Brooks, R.R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental Pollution - Series A 31, 277- 285.

Saier, M.H. Jr. and Trevors, J.T. (2008). Phytoremediation. Water, Air, and Soil Pollution DOI 10.1007/s11270-008-9673-4.

Salvatore, M.D., Carafa, A.M. and Carratú, G. (2008). Assessment of heavy metals phytotoxicity using seed germination and root elongation test: A comparison of two growth substrates. Chemosphere 73, 1461-1464.

Wu, J., Hsu, F. and Cunningham, S. (1999). Che-late-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environmental Science and Technology 33, 1898-1904.

Xintaras, C. (1992). Analyses paper: Impact of lead-contaminated soil on public health. U. S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry http://

Zayed, A.D. and Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil 249, 139-156.

Zhao, F.J., Lombi, E. and McGrath, S.P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249, 37-43.
How to Cite
Buendía-González, L., Orozco-Villafuerte, J., Estrada-Zúñiga, M. E., Barrera Díaz, C. E., Vernon-Carter, E. J., & Cruz-Sosa, F. (2020). In vitro LEAD AND NICKEL ACCUMULATION IN MESQUITE (Prosopis laevigata) SEEDLINGS. Revista Mexicana De Ingeniería Química, 9(1), 1-9. Retrieved from
Food Engineering