• I. Figueroa-González Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • H. Hernández-Sánchez Departamento de Alimentos Escuela Nacional de Ciencias Biológicas IPN
  • G. Rodríguez-Serrano Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • L. Gómez-Ruiz Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • M. García-Garibay Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
  • A. Cruz-Guerrero Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa
Keywords: galactooligosaccharides, prebiotic, probiotic


In order to assess the antimicrobial effect of L. casei Shirota and prebiotic effect of a galactoside (Oligomate 55), co-cultures of this probiotic bacterium and Escherichia coli were made in an in vitro fermentation with temporary and physicochemical characteristics of key regions of large bowel. Simulations of ascending colon, transverse colon and descending colon were used. With Oligomate 55 an enhancement of up to three-fold of the growth of L. casei Shirota was observed compared to glucose; then, our results confirmed that Oligomate 55 had a prebiotic effect on L. casei Shirota, stimulating its growth. In all studied regions L. casei Shirota had a bacteriostatic effect on E. coli UAM0403. Our results showed the prebiotic effect of Oligomate 55 on L. casei Shirota. Despite Oligomate 55 significantly stimulated the growth of L. casei Shirota, E. coli UAM0403 was able to grow with Oligomate 55 in the same amount as with glucose. These kinds of studies are important to be considered for an adequate selection of prebiotics as a critical step during synbiotic development.


Brink, M., Todorov, S.D., Martin, J.H., Senekal, M. and Dicks, L.M.T. (2006) The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. Journal of Applied Microbiology 100, 813-820.

Chockchaisawasdee, S., Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. (2004) Synthesis of galacto-oligosaccharide from lactose using β-galactosidase from Kluyveromyces lactis: studies on batch and continuous UF membrane - fitted bioreactors. Biotechnology and Bioengineering 89, 434-443.

Crittenden, R. G. and Playne, M. J. (1996) Production, properties and applications of foodgrade oligosaccharides. Trends in Food Science and Technology 7, 353-361.

Cummings, J.H. and Macfarlane, G.T. (2002) Gastrointestinal effects of prebiotics. British Journal of Nutrition 87 (Suppl. 2), S145-S151.

De Vrese, M. and Schrezenmeir, J. (2008) Probiotics, Prebiotics and Synbiotics. Advances in Biochemical Engineering/Biotechnology 111, 1-66.

Fooks, L.J. and Gibson, G.R. (2002) in vitro investigations of the effect of probiotics and rebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology 39, 67-75.

Fujimoto, J., Matsuki, T., Sasamoto, M., Tomii, Y. and Watanabe, K. (2008) Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. International Journal of Food Microbiology 126, 210-215.

Hua, W., Yang, X., Yonghua, X., Feng, X. and Gengpin, L. (2007) Synergistic antidigestion effect of Lactobacillus rhamnosus and bovine colostrums in simulated gastrointestinal tract (in vitro). Applied Microbiology and Biotechnology 75, 619-626.

Huebner, J., Wehling, R.L. and Hutkins, R.W. (2007) Functional activity of commercial prebiotics. International Dairy Journal 17, 770- 775.

Macfarlane, G.T., Macfarlane, S. and Gibson, G.R. (1998) Validation of a Three-Stage compound culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microbial Ecology 35, 180-187.

Macfarlane, S., Macfarlane, G.T. and Cummings J.H. (2006) Review article: prebiotics in the gastrointestinal tract. Alimentary Pharmacology and Therapeutics 24, 701-713.

Millette, M., Luquet, F.M. and Lacroix, M. (2006) in vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Letters in Applied Microbiology 44, 314-319.

Naaber, P., Smidt, I., Stsepetova, J., Brilene, T., Annuk, H. and Mikelsaar, M. (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. Journal of Medical Microbiology 53, 551-554.

Palframan, R.J., Gibson, G.R. and Rastall, R.A. (2002) Efect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe 8, 287-292.

Sar, C., Santoso, B., Mwenya, Y., Gamoa, T., Kobayashi, R., Morikawa, K., Kimura, H., Mizukoshi, J. and Takahashi, J. (2004) Manipulation of rumen methanogenesis by the combination of nitrate with β 1-4 galactooligosaccharides or nisin in sheep. Animal Feed Science and Technology 115, 129-142.

Senok, A.C., Ismaeel, A.Y. and Botta, G.A. (2005) Probiotics: facts and myths. Clinical Microbiology and Infection 11, 958-966.

Tharmaraj, N. and Shah N. P. (2003) Selective Enumeration of L. Delbruecki ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and Propionibacteria. Journal of Dairy Science 86 (7), 2288-2296.

Voragen A.G.J. (1998) Technological aspects of functional food-related carbohydrates. Trends in Food Science and Technology 9, 328-335.
How to Cite
Figueroa-González, I., Hernández-Sánchez, H., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2020). ANTIMICROBIAL EFFECT OF Lactobacillus casei STRAIN SHIROTA CO-CULTIVATED WITH Escherichia coli UAM0403. Revista Mexicana De Ingeniería Química, 9(1), 11-16. Retrieved from
Food Engineering

Most read articles by the same author(s)