• O. Velázquez-Camilo
  • J. J. Álvarez-Ramírez
  • E. Bolaños-Reynoso
Keywords: isothermic crystallization, cooling crystallization, moment’s model, dynamic characterization, control strategy


In this work an operation alternative and controllability was studied by simulation of a stirred tank continuous isothermic crystallizer through of its dynamic characterization. The process model is based on the moments technique. The methodological process consisted on the implementation of a SISO (single input-single output) feedback servocontrol algorithm and a PID (proportional-integral-derivative) controller. The tuning was carried out with the strategies of internal model control (IMC). The process variable to control was the average diameter in % volume D(4,3) =µ4 /µ3, because is a useful variable in both commercial and industrial environment; the manipulate variable in isothermic operation and for cooling was the solute concentration in the feeder and cooling temperature, respectively. Since static analysis were obtained zones where the presence of limits cycle exists and values of more favorable residence times to operate and control the crystallization process for isothermic and cooling operation. Feedback PID controller in the two operations was satisfactory eliminating the deviations between the adjustment
point and the response of the controllable variable.


Bolaños, R. E. (2000). Control y optimización de las condiciones de operación de cristalizadores batch por enfriamiento. Tesis de Doctorado en Ciencias en Ingeniería Química. I.T. de Celaya.

Chiu, T. y Christofides, P. D. (1999). Nonlinear Control of Particulate Processes. AIChE Journal 45(6), 1279-1297.

Christofides P. D. y Chiu T. Y. (2000). Robust control of particulate processes using uncertain population balance. AIChE Journal. 46(2), 266-280.

Christofides P. D., Shi D., El-Farra N. H., Li M. y Mhaskar P. (2006). Predictive control of particle size distribution in particulate processes. Chemical Engineering Science 61, 266-280.

Doherty M. F., Jeffrey D. W. y Duncan A. M. (2006). Choosing an operating policy for seeded batch crystallization. AIChE Journal. 52(6), 2046-2054.

Jerauld, G. R., Vasatis, Y. y Doherty, M. F. (1983). Simple Conditions for the Appearance of Sustained Oscillations in Continuous Crystallizers. Chemical Engineering Science 38(10), 1675–1681.

Lei S. J., Shinnar R. y Katz S. (1971). The stability and dynamic behavior of a continuous crystallizer with a fines trap. AIChE Journal, 17(6), 1459-1470.

Lugo, J. R. (2005). Estudio para la determinación de la zona metaestable a través del análisis del proceso de nucleación para el sulfato de amonio. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Celaya, México.

Ondrey, G. y Hairston, D. (2001). Crystallization: A melting pot. Chemical Engineering, 43-46.

Osorio, R. R. (2004). Determinación de coeficientes de transferencia de masa aplicados a la cinética de crecimiento en cristalización de azúcar de caña. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Orizaba, México.

Pathath, P. K. y Kienle A. (2003). Nonlinear Oscillations in Ammonium Sulfate Crystallization: A Comparison of Different Model Predictions. Industrial and Engineering Chemistry Research 42(26), 6949-6955.

Quintana Hernández, P. A., Tututi Avila, S., Bolaños Reynoso, E., Salcedo Estrada, L. I. y Fierro

González, J. C. (2007). Desarrollo de un algoritmo de control para el proceso de cristalización por enfriamiento usando lógica difusa. Memorias del XXVIII AMIDIQ, México.

Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control 13, 291-309.

Srinivasakannan, C., Vasanthakumar, R., Iyappan, K. y Rao, P. G. (2002). A study on crystallization of oxalic acid in batch cooling crystallizer. Chemical and Biochemical Engineering Quarterly 16 (3) 125-129.
How to Cite
Velázquez-Camilo, O., Álvarez-Ramírez, J. J., & Bolaños-Reynoso, E. (2020). COMPARATIVE ANALYSIS OF THE CRYSTALLIZER DYNAMICS TYPE CONTINUOUS STIRRED TANK: ISOTHERMIC AND COOLING CASE. Revista Mexicana De Ingeniería Química, 8(1), 127-133. Retrieved from
Simulation and control

Most read articles by the same author(s)