NUMERICAL STUDY OF NATURAL CONVECTION IN A 2-D SQUARE CAVITY WITH FLUID-POROUS MEDIUM INTERFACE AND HEAT GENERATION

  • H. Jiménez-Islas Instituto Tecnológico de Celaya
  • M. Calderón-Ramírez Instituto Tecnológico de Celaya
  • J.L. Navarrete-Bolaños
  • J.E. Botello-Álvarez Instituto Tecnológico de Celaya
  • G.M. Martínez-González Instituto Tecnológico de Celaya
  • F. López-Isunza Universidad Autónoma Metropolitana-Iztapalapa
Keywords: fluid-porous medium interface, orthogonal collocation, one-domain approach

Abstract

A numerical study was performed regarding two-dimensional natural convection in a square cavity that contains two horizontal regions formed by a homogeneous fluid and an isotropic heat-generating porous medium. The onedomain formulation was used for developing the mathematical model, with a binary parameter so as to the momentum and energy equations were valid throughout the domain. The governing equations were discretized using orthogonal collocation and the set of algebraic equations generated is solved via Newton method. The simulations were performed for Rayleigh numbers among 103 and 106; for values of the dimensionless heat source (S0) of 0, 10, 30, and 50; Darcy numbers of 10-4, 10-6, and 10-8 and for positions of the porous medium-fluid interface between 0≤ Yp ≤ 1, considering the Prandtl number equals to 0.71, to assess their effect on the streamlines, isotherms and Nusselt number. In addition, this method was compared with previously published reports with good agreement. The results indicate that the one-domain formulation is a good approximation for predicting the flow between the two phases without the requirement to specify interfacial conditions.

References

Alazmi, B. y Vafai, K. (2001). Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer 46 (44), 1735-1749.

Basu, A. J. y Khalili, A. (1999). Computation of flow through a fluid-sediment interface in a benthic chamber. Physics of Fluids 11 (6), 1395-1405.

Beavers, G.S. y Joseph, D.D. (1967). Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics 30, 197-207.

Beckermann, C., Ramadhyani, S. y Viskanta, R. (1987). Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. Journal of Heat Transfer 109, 363-371.

Bird, R. B., Stewart, W. E. y Lightfoot, E. N. (2002). Transport Phenomena. 2nd Edition, John Wiley & Sons Inc. USA.

Brinkman, H.C. (1947). On the permeability of media consisting of closely packed porous particles. Applied Science and Research A1, 81-86.

Carbonell, R. G. y Whitaker, S. (1984). Heat and mass transport in porous media. In Mechanics of Fluid in Porous Media. J. Bear and Corapcioglu, M. Y. Eds. Martinus Nijhoff, Brussels, 121-198.

Chandesris, M. y Jamet, D. (2006). Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. International Journal of Heat and Mass Transfer 49 (13-14) 2137- 2150.

Das, S. y Sahoo R.K. (1999). Effect of Darcy, fluid Rayleigh and heat Generation parameters on Natural Convection in a Porous Square Enclosure: A Brinkman-Extended Darcy model. International Communications in Heat and Mass Transfer 26, 569-578.

Deng, C. y Martinez, D. M. (2005). Viscous flow in a channel partially filled with a porous medium and with wall suction. Chemical Engineering Science 60(2), 329-336.

Finlayson, B. A. (1980). Nonlinear Analysis in Chemical Engineering. McGraw-Hill Book Co. USA. 366 p.

Kim, G.B. y Hyun, J. M. (2004). Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media. Numerical Heat Transfer A. 45(6), 569-582.

Gobin, D., Goyeau, B. y Songbe, J. P. (1998). Double diffusive natural convection in a composite fluid-porous layer. Journal of Heat Transfer 120(1), 234-242.

Gobin, D., Goyeau, B. y Neculae, A. (2005). Convective heat and solute transfer in partially porous cavities. International Journal of Heat and Mass Transfer 48, (10), 1898-1908.

Gobin, D. y Goyeau, B. (2008). Natural convection in partially porous media: A brief overview. International Journal of Numerical Methods for Heat & Fluid Flow 18(3-4), 465-490.

Goyeau, B., Lhuillier, D., Gobin, D. y Velarde, M. G. (2003). Momentum transport at a fluidporous interface. International Journal of Heat and Mass Transfer 46(21), 4071-4081.

Hirata, S. C., Goyeau, B., Gobin, D. y Cotta, R. M. (2006). Stability of natural convection in superposed fluid and porous layers using integral transforms. Numerical Heat Transfer Part B-Fundamentals 50(5), 409-424

Hirata, S.C., Goyeau, B. y Gobin, D. (2007a). Stability of natural convection in superposed fluid and porous layers: Influence of the interfacial jump boundary condition. Physics of Fluids 19, (5), 058.

Hirata, S.C., Goyeau, B., Gobin, D., Carr M. y Cotta R.M. (2007b). Lineal stability of natural convection in superposed fluid and porous layers: Influence of the interfacial modeling. International Journal of Heat and Mass Transfer 50, 1356-1367.

Hirata, S.C., Goyeau, B., Gobin, D., Chandesris M. y Jamet D. (2009). Stability of natural convection in superposed fluid and porous layers: Equivalence of the one- and twodomain approaches. International Journal of Heat and Mass Transfer 52, 533-536.

Jiménez-Islas, H. (1999). Modelamiento Matemático de la Transferencia de Momentum, Calor y Masa en Medios Porosos. Tesis Doctoral. UAM, México D.F.

Jiménez-Islas, H., Navarrete-Bolaños, J.L. y Botello Álvarez, E. (2004). Estudio numérico de la convección natural de calor y masa 2-D en granos almacenados en silos cilíndricos / numerical study of the natural convection of heat and 2-D mass of grain stored in cylindrical silos. Agrociencia 38, 325-342.

Jiménez-Islas, H. y López-Isunza F. (1996). PARCOL2: Programa para resolver sistemas de ecuaciones diferenciales parciales parabólicas no lineales, por doble colocación ortogonal. Avances en Ingeniería Química 6 (2), 168-173.

Jiménez-Islas, H., López-Isunza, F. y Ochoa-Tapia, J. A. (1999). Natural convection in a cylindrical porous cavity with internal heat source: a numerical study with Brinkmanextended Darcy model. International Journal of Heat and Mass Transfer 42, 4185-4195.

Jiménez-Islas, H., Magaña-Ramírez, J. L. y Torregrosa-Mira A. (1996). Efecto del calor de respiración sobre la convección natural en el almacenamiento de granos en silos. Memorias VI Congreso Nacional de la Asociación Mexicana de Ingeniería Agrícola, México.

Jue, T.C. (2003). Analysis of thermal convection in a fluid-saturated porous cavity with internal heat generation. Heat and Mass Transfer 40, 83-89.

Ochoa-Tapia, J.A. y Whitaker, S. (1995). Momentum-transfer at the boundary between a porous-medium and a homogeneous fluid .1. Theoretical development. International Journal of Heat and Mass Transfer 38, 2635-2646.

Ochoa-Tapia, J. A. y Whitaker, S. (1997). Heat transfer at the boundary between a porous medium and a homogeneous fluid. International Journal of Heat and Mass Transfer 40, 2691-2707.

Neale, G. y W. Nader, W. (1974). Practical significance of Brinkman's extension of Darcy's Law. Canadian Journal of Chemical Engineering 52, 475-478.

Nield, D.A. y Bejan, A. (1999). Convection In Porous Media. 2nd Edition. Springer-Verlag, USA.

Prasad, V. y Chui, A. (1989). Thermal convection in a cylindrical porous enclosure with internal heat generation. Journal of Heat Transfer 111, 916-925.

Roache, P. J. (1972). Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, N. M. USA.

Saito, T. y Hirose, K. (1989). High-accuracy benchmark solutions to natural convection in a square cavity. Computational Mechanics 4, 417-427.

Singh, A.K., Leonardi, E. y Thorpe, G.R. (1993). Three-Dimensional natural convection in a confined fluid overlying a porous layer. Journal of Heat Transfer 115, 631-638.

Thorpe, G.R., Ochoa-Tapia, A. y Whitaker, S. (1991).The Diffusion of Moisture in Food Grains - I. The Development of a Mass Transport Equation. Joural of Stored Products Research 27,1-9.

Valdés-Parada, F. J., Goyeau. B. y Ochoa-Tapia, J. A. (2006). Diffusive mass transfer between a microporous medium and an homogeneous fluid: Jump boundary conditions. Chemical Engineering Science 61(5), 1692-1704.

Valencia-López, J. J., Espinosa-Paredes, G. y Ochoa-Tapia, J. A. (2003). Mass transfer jump condition at the boundary between a porous medium and a homogeneous fluid. Journal of Porous Media 6 (1), 33-49.

Whitaker, S. (1986). Flow in porous media I: a theoretical derivation of Darcy's law. Transport in Porous Media 1, 3-25.

Whitaker, S. (1999). The Method of Volume Averaging. Kluwer Academic Publishers. Dordrecht, The Netherlands.
Published
2020-05-21
How to Cite
Jiménez-Islas, H., Calderón-Ramírez, M., Navarrete-Bolaños, J., Botello-Álvarez, J., Martínez-González, G., & López-Isunza, F. (2020). NUMERICAL STUDY OF NATURAL CONVECTION IN A 2-D SQUARE CAVITY WITH FLUID-POROUS MEDIUM INTERFACE AND HEAT GENERATION. Revista Mexicana De Ingeniería Química, 8(2), 169-185. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1742
Section
Transport phenomena

Most read articles by the same author(s)