• G. Inei-Shizukawa
  • H. A. Velasco-Bedrán
  • G. F. Gutiérrez-López
  • H. Hernández-Sánchez
Keywords: zeolite, ethanol, Taguchi optimization, Saccharomyces cerevisiae


The technologies for ethanol production from sugars, starch and lignocellulosic materials for food and biofuel applications are being constantly improved. A number of modifications to increase the production and yield of ethanol have been implemented such as immobilization of cells, genetic modification and use of mixed cultures. In this work, the addition of zeolites to increase the alcohol production of the yeast Saccharomyces cerevisiae was studied. The experiments were designed with seven factors for ethanol yield (carbon and nitrogen source, Mg2+ and zeolite concentration, temperature, pH and inoculum size) at two levels with an orthogonal array layout of L8 (27) designed to keep the number of experiments to a minimum. Addition of 0.2 g L-1 of Valfor® 100 zeolite NaA resulted in important increases in ethanol production (20%) and yield (25%). An adsorption phenomenon could be observed by SEM between the zeolite particles and the yeast cells. This and the well known effects of toxic cation concentration decrease, pH regulation and ethanol and carbon dioxide adsorption could have caused the improvement in the ethanol production and yield. The optimization study indicated that zeolite concentration was the most significant factor in this increase even though it was used at lower levels compared with other studies, indicating the importance of the optimization studies in bioprocesses.


Ađnađevi´c, B., Mojovi´c, Z., Abu Rabi, A. (2008). The kinetics of ethanol adsorption from the aqueous phase onto zeolite NaZSM-5. Adsorption 14, 123-131.

AOAC International (1995). Standard Methods of the AOAC (15th edn.). The Association, Arlington.

Blanch, H.W. and Clark, D.S. (1997). Biochemical Engineering. 173-174. Marcel Dekker, Inc., New York.

Bomchil, N., Watnick, P. and Kolter, R. (2003). Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. Journal of Bacteriology 185, 1384-1390.

Castellar, M.R., Aires-Barros, M.R., Cabral, J.M.S., Iborra, J.L. (1998). Effect of zeolite addition on ethanol production from glucose by Saccharomyces bayanus. Journal of Chemical Technology and Biotechnology 73, 377-384.

Chmelka, B.F. (2006). Zeolites: large molecules welcome. Nature Mater 5, 681-682.

Einicke, W.D., Gläser, B., Schöouliner, R. (1991). In-Situ recovery of ethanol from fermentation broth by hydrophobic adsorbents. Acta Biotechnologica 11, 353-358.

Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G. (2006). Bioethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnology 24, 549-556.

Harding, P.J., Obi, E.I., Slaughter, J.C. (1984). The potential action of NH4 + as a stimulator of ethanol production by Saccharomyces cerevisiae. FEMS Microbiology Letters 21, 185-187.

Jeffries, T.W. (2005). Ethanol fermentation on the move. Nature Biotechnology 23, 40-41.

Kubota, M., Nakabayashi, T., Matsumoto, Y., Shiomi, T., Yamada, Y., Ino, K., Yamanokuchi, H., Matsui, M., Tsunoda, T., Mizukami, F., Sakaguchi, K. (2008). Selective adsorption of bacterial cells onto zeolites. Colloid Surface B 64. 88-97.

Laopaiboon, L., Thanonkeo, P., Jaisil, P., Laopaiboon, P. (2007). Ethanol production from sweet sorghum juice in batch and fedbatch fermentations by Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology 23, 1497–1501.

Prasad, K.K., Mohan, S.V., Rao, R.S., Pati, B.R., Sarma, P.N. (2005). Laccase production by Pleurotus ostreatus 1804: optimization of submerged culture conditions by Taguchi DOE methodology. Biochemical Engineering Journal 24, 17-26.

Roque-Malherbe, R., Delgado, R., Contreras, O., Lago, A. (1987). Behaviour of yeast fermentation in the presence of zeolite. Biotechnology Letters 9, 640-642.

Sánchez, O.J., Cardona, C.A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99, 5270-5295.

Shindo, S., Takata, S., Taguchi, H., Yoshimura, N. (2001). Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnology Letters 23, 2001-2004.

Tosun, A., Ergun, M. (2008). Effect of zeolite NaY and Ca-Montmorillonite on ethanol production using synthetic molasses. Applied Biochemistry and Biotechnology 144, 161-168.

Yang, B., Wyman, C.E. (2007). Biotechnology for cellulosic ethanol. Asia Pacific Biotech News 11, 555-563.

Zhang, J., Tian, S., Zhang, Y., Yang, X. (2008). Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Applied Biochemistry and Biotechnology 150, 185-192.
How to Cite
Inei-Shizukawa, G., Velasco-Bedrán, H. A., Gutiérrez-López, G. F., & Hernández-Sánchez, H. (2020). STATISTICAL APPROACH TO OPTIMIZATION OF ETHANOL FERMENTATION BY Saccharomyces cerevisiae IN THE PRESENCE OF VALFOR® 100 ZEOLITE NAA. Revista Mexicana De Ingeniería Química, 8(3), 265-270. Retrieved from

Most read articles by the same author(s)

1 2 3 > >>