• A. Pulido Instituto de Ciencias Básicas. Universidad Veracruzana
  • C.I. Beristain Instituto de Ciencias Básicas. Universidad Veracruzana
Keywords: stability, ascorbic acid, microencapsulation, chitosan


A solution of chitosan, ascorbic acid and tripolyphosphate was prepared and dried by spray drying to obtain microcapsules of ascorbic acid. A study of stability was made storing at 35C and different water activities (from 0.108 to 0.743) during 60 days. The yield of microencapsulation was 78 %. The best morphology and the less degradation for microcapsules was 6.4 % at water activity of 0.108 and 35◦C for 60 days of storage.


Braverman, J.B.S. (1978). Introduction a la bioquímica de los alimentos. 2a Edición. Ed. Omega. Barcelona. España. 355 p.

Brown, T.L., Bursten, B.E. y Burdge, J.R. (2004). Química: La ciencia central. 9a Edición. Ed. Pearson Educación. México. 1152 p.

Desai, K.G.H. y Park, H.J. (2004). Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. Drug Development Research 63,181-189.

Gharsallaoui, A., Roudaut G., Chambin O., Voilley A. y Saurel R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40, 1107-1121.

Hassan E.E., Parish, R.C. y Gallo, J.M. (1992). Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharmaceutical Research 9, 390-397.

Nisha, P.R.S., Singhaland y Pandit, A.B. (2004). A study on degradation kinetics of ascorbic acid in Amla (Phyllanthus emblica L.) during cooking. International Journal of Food Sciences and Nutrition 55 (5), 415-422.

Ohya, Y., Takei, T., Kobayashi, H. y Ouchi, T. (1993). Release behavior of 5-fluorouracil from chitosan-gel microspheres immobilizing 5- fluorouracil derivative coated with polysaccharides and their cell specific recognition. Journal of Microencapsulation 10, 1-9.

Peniche, C.W., Arguelles-Monal., Peniche, H. y Acosta, N. (2003). Chitosan: an attractive biocompatible polymer for microencapsulation. Macromolecular Bioscience 3, 511-520.

Pfendt, B.L.L., Vukajinovich, V., Blagojevich, Z.N. y Radojevich, M.P. (2003). Second order derivative spectrophotometric method for determination of vitamin C content in fruits, vegetables and fruit juices. European Food Research and Technology 217(3), 269- 272.

Pierucci, A.P., Andrade, L.R., Baptista, E.B., Bolpato, A.M. y Rocha-Leao M.E. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation 23(6), 654-662.

Ré, M.I. (1998). Microencapsulation by spray drying. Drying Technology 16,1195-1236.

Rosenberg, M.I., Kopelman, J. y Talmon, Y. (1985). A scanning electron microscopy study of microencapsulation. Journal of Food Science 50, 139-144.

Trindade, M.A. y Grosso, C.R.F. (2000). The stability of ascorbic acid microencapsulated in granules of starch and in gum Arabica. Journal of Microencapsulation 17, 169-176.

Uddin, M.S., Hawlader, M.A.N y Zhou, H.J. (2001). Microencapsulation of acid ascorbic: effect of process variables on product characteristics. Journal of Microencapsulation 18, 199-209.

Yáñez, F.J., Salazar, J.A., Chaires, M. J., Jiménez, H.M., Márquez, R.M. Ramos, R.E. (2002). Aplicaciones tecnológicas de la microencapsulación. Avance y Perspectiva 21, 313-319.

Zilberboim, R.I.J., Kopelman, y Talmon, Y. (1986). Microencapsulation by a dehydrating liquid: retention of paprika oleoresin and aromatic esters. Journal Food Science 51 (5), 1301-1306.
How to Cite
Pulido, A., & Beristain, C. (2020). SPRAY DRIED ENCAPSULATION OF ASCORBIC ACID USING CHITOSAN AS WALL MATERIAL. Revista Mexicana De Ingeniería Química, 9(2), 189-195. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1765
Food Engineering