Decreasing the value of the cell potential using nPt/C|Ti and RuO2|Ti as cathodes in a reactor for electro leaching of electronic e-waste

  • J.C. Ramírez-Castellanos
  • M. Luna-Trujillo
  • V.E. Reyes-Cruz
  • A. Manzo-Robledo
  • G. Urbano-Reyes
  • M.A. Veloz-Rodríguez
  • J.C. Juarez-Tapia
  • J.A. Cobos-Murcia Universidad Autónoma del Estado de Hidalgo
Keywords: Hydrogen Evolution Reaction, E-waste, Electroleaching, STY, Electrochemical reactor


This work has to purpose decrease the value of the cell potential (Ecell) of an electrochemical reactor with a separate compartment with an anionic membrane designed for electro-leaching electronic waste (E-waste). In the anodic compartment using a titanium plate in HNO3 as an anolyte, while the electro-leaching of the metals and the evaluation of the oxygen evolution reaction (OER) was studied. Three different cathodes (Platinum; Pt, titanium coated with ruthenium oxide; RuO2|Ti and titanium coated with platinum nanoparticles; nPt/C|Ti) were used for the catalysis of the evolution reaction of hydrogen (HER) in a solution of H2SO4. The results obtained by voltammetry indicate that the electrodes modified with RuO2 and nPt/C, promote a greater cathodic current for the HER, decreasing the cell potential and increase the current density of the induced metallic electro-leaching. This implies the decrease of the electrical power that the reactor requires during its operation. Obtaining Space-time yield (STY) values of 123.4 and 64 mol·L-1·h-1·cm-2 for the carbon and platinum nanoparticle and the ruthenium oxide catalysts respectively.


Alonso, V. (2006). Carbonyl tailored electrocatalysts. Fuel cell, 6, 182-189.
ASTOM (2019) Corporation Ion exchange membrane (Accessed 17 JANUARY 2019). Available at:
Bagotsky, V. (2006) Fundamentals of electrochemistry, 2nd Ed. pp. 34-41. Wiley & Sons, Inc., USA
Bard, A.; Faulkner, L.; Leddy, J.; Zoski, C. 2001) Electrochemical methods: fundamentals and applications, pp. 20-28. Jonh Wiley & Sons, Inc., New York
Bockris, J.; Reddy, A. Modern Electrochemistry: An Introduction to an Interdisciplinary Area, 1st Ed. Plenum Publishing Corporation, New York, NY, USA, 1979; pp. 10-20.
Gennero de Chialvo, M.R., Chialvo, A. (1999). The Tafel–Heyrovsky route in the kinetic mechanism of the hydrogen evolution reaction. Electrochem. Commun. 1, 379-382.
Eftekhari, A. (2017). Electrocatalysts for hydrogen evolution reaction. Int. J. of Hyd. Energy, 42, 11053-11077.
Esparragoza-Montero, R., Guevara, A., & Torre, E.D. (2012). Recovery of Gold, Silver, Copper and Niobium from Printed Circuit Boards Using Leaching Column Technique. J. Earth Sci. Eng., 2, 590-595.
Fogarasi, S.; Imre-Lucaci, F.; Imre-Lucaci, Á.; Ilea, P. (2014). Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation. J. of Hazardous Mat., 273, 215-221.
Imre-Lucaci, Á.; Nagy, M.; Imre-Lucaci, F.; Fogarasi, S. (2017). Technical and environmental assessment of gold recovery from secondary streams obtained in the processing of waste printed circuit boards. Chem. Eng. J., 309, 655-662.
Kasper, A.; Carrillo, A.; Garcia, G.; Veit, M.; Perez, H. (2016). Determination of the potential gold electrowinning from an ammoniacal thiosulfate solution applied to recycling of printed circuit board scraps. Waste Man. & Research, 34, 47-57. .
Lee, C.; Ju, Y.; Chou, P.; Huang, Y.; Kuo, L.; Oung, J. (2005). Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochem. Comm., 7, 453-458.
López, C.; Reyes, C.; Veloz, R.; Urbano, R.; Cobos, M.; Nava, M. (2017). Electrochemical Selective Leaching and Deposition of Ag, Au and Pt from electronic waste. Int. J. Electrochem. Sci., 12, 8198-8216.
López, C.; Reyes, V.; Velóz, A.; Hernández, J.; Badillo, F.; Cobos-Murcia, J.A. (2016). Speciation and Characterization of E-Waste, Using Analytical Techniques. In: Characterization of Minerals, Metals, and Materials, (Ikhmayies, S), Pp. 629-636. John Wiley & Sons, Switzerland.
Mateos, S.; Hernández, P.; Lartundo, R.; Manzo, R. (2016). Methanol Electro-Oxidation on Pt–Carbon Vulcan Catalyst Modified with WOx Nanostructures: An Approach to the Reaction Sequence Using DEMS. Indus. & Eng. Chem. Research, 56, 161-167.
Oliver, T.; Arce, E.; Cortés, E.; Bolarín, M.; Sánchez, F.; González, H.; Manzo, R. (2012). Electrochemical behavior of NixW1− x materials as catalyst for hydrogen evolution reaction in alkaline media. In: J. of Alloys and Comp. 536, 245-249. Elsevier Science, Netherland.
Ortega, C.; Herrera, P.; Verde, G. (2010). Mathematical Modeling of the Hydrogen Evolution Reaction on Pt/C Electrodes Considering Diffusion Effects. J. of new mats. for Electrochem. System, 13, 161-229.
Palma, G.; Vazquez, A.; Ostos, C.; Manzo, R.; Romero, I.; Calderón, J.; González, I. (2018). In search of the active chlorine species on Ti/ZrO2-RuO2-Sb2O3 anodes using DEMS and XPS. Electrochim. Acta, 275, 265-274.
Pletcher, D. (2009). A first course in electrode processes. pp. 5-18,110-125. Royal Society of Chemistry, United Kingdom
Pletcher, D.; Walsh, F. (1990). Industrial Electrochemistry, pp. 8-17. Springer, USA
Safizadeh, F.; Ghali E.; Houlachi, G. (2015). Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review. Int. J. of Hyd. Energy, 40, 256-274.
Prabhuram, J.; Wang, X.; Hui, C.; Hsing, I. (2003). Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. The J. of Phys. Chem. B, 107, 11057-11064.
Prabhuram, J.; Wang, X.; Hui, C.; Hsing, I. ( 2003b). Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. The J. of Phys. Chem. B, 107, 11057-11064.
Ramírez, C.; Cobos-Murcia, J.A..; Reyes, V.; Veloz, A.; Urbano, G.; Hernández, J. (2016) ( AACTyM-Universidad Autónoma del Estado de Hidalgo). Caracterización de partículas metálicas de E-waste.
Strmcnik, D.; Lopes, P.; Genorio, B.; Stamenkovic, V.; Markovic, N. (2016). Design principles for hydrogen evolution reaction catalyst materials. Nano Energy. 29, 29-36.
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.; Wang, Z. (2017). Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 37, 136-157.
Terezo, A.; Pereira, E. (2002). Preparation and characterisation of Ti/RuO2 anodes obtained by sol–gel and conventional routes. Mats. Letters, 53, 339-345.
Torres de la Cruz, R.; Mejía, J.; Reátegui, R. (2012). Determinación experimental de los parámetros óptimos de operación en el proceso de electrolixiviación y electrodeposición secuencial de oro en soluciones ácidas de Tiourea a partir de sulfuros concentrados. TECNIA, 22, 55-64.
Vargas, L.; Rojas, R. (2017). Gold electroleaching in a porous bed reactor. Rev. de la Fac. de Ciencias, 6, 57-66.
Wendt, H.; Kreysa, G. (1999). Electrochemical engineering: science and technology in chemical and other industries. pp. 21-27. Springer-Verlag, Germany.
How to Cite
Ramírez-Castellanos, J., Luna-Trujillo, M., Reyes-Cruz, V., Manzo-Robledo, A., Urbano-Reyes, G., Veloz-Rodríguez, M., Juarez-Tapia, J., & Cobos-Murcia, J. (2021). Decreasing the value of the cell potential using nPt/C|Ti and RuO2|Ti as cathodes in a reactor for electro leaching of electronic e-waste. Revista Mexicana De Ingeniería Química, 20(3), Cat1852: 1-12.
Catalysis, kinetics and reactors