INTERFACIAL FORCES ON A BUBBLE GROWING WITH ECCENTRIC CELL MODEL

  • G. Espinosa-Paredes Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa
  • O. Cazarez-Candia Programa de yacimientos Naturalmente Fracturados, Instituto Mexicano del Petróleo
  • A. Vázquez-Rodríguez Programa de yacimientos Naturalmente Fracturados, Instituto Mexicano del Petróleo
Keywords: potential flow, two-phase flow, Navier-Stokes equations, closure relationships

Abstract

This article presents the development of a two-phase flow model in which the variation of the bubble radius due to changes in pressure was taken into account. The development considers expansion effects in the interaction forces between a dilute dispersion of gas bubbles and a continuous liquid phase. The closure relationships, associated with the spatial deviation around averaging variables, were formulated as functions of known variables. In order to solve
the closure problem, as an approach of the heterogeneous structure of the two-phase flow, a geometric model given by an eccentric unit cell was applied. The obtained closure relationships include terms that represent combined effects from translation and pulsation due to displacement and size variation of the bubbles.

References

Biesheuvel, A., Spoelstra, S. (1989). The added mass coefficient of a dispersion of spherical gas bubbles in liquid. International Journal of Multiphase Flow 15, 911-924.

Cazarez Candia, O. (2001). Modelado de la expansión de burbujas presentes en la fase líquida en tuberías horizontales, Tesis de Doctorado, CENIDET.

Currie, I.G. (1974). Fundamental Mechanics of Fluids. McGraw-Hill.

Cheng, L.Y., Drew, D.A., Lahey, R.T. (1985). An analysis of wave propagation in bubbly two component two-phase flows. Journal of Heat Transfer 107, 402-408.

Espinosa Paredes, G. (1998). Ondas Cinemáticas en Reactores BWR. Tesis de Doctorado. Universidad Autónoma Metropolitana-Iztapalapa.

Espinosa-Paredes, G., Cazarez-Candia, O., Vazquez, A. (2004). Theoretical derivation of the interaction effects with expansion effects to bubbly two-phase flows. Annals of Nuclear Energy 31, 117-133.

Gray, W.G. (1975). A derivation of the equations for multiphase transport. Chemical Engineering Science 30, 229-233.

Geurst, J.A. (1985). Virtual mass in two-phase bubbly flow. Physica 129A, 233-261.

Lahey, R. T., Podowski, M. Z. (1989). On the analysis of various instabilities in two-phase flows. Multiphase Science and Technology 4, 183-370.

Lahey, R. T. (1991). Void wave propagation phenomena in two-phase flow. A.I.Ch.E. Journal 37, 123-135.

Lahey, R. T. (1992). Wave propagation phenomena in two-phase flow. In: Boiling Heat Transfer, Lahey, R. T. (Ed.). Elsevier Science Publishers. The Netherlands, pp. 123-173.

van Wijngaarden, L. (1976). Hydrodynamic interaction between gas bubbles in liquid. Journal of Fluid Mechanics 77, 27-44.

Wallis, G.B. (1989). Inertial coupling in two-phase flow: Macroscopic properties of suspensions in an inviscid fluid. In: Multiphase Science and Technology, eds G.F. Hewitt, J.M. Delhaye and N. Zuber. Vol 5. Hemisphere Publishing Corporation, New York, pp 239-361.

Zuber, N. (1964). On the disperse two-phase flow in the laminar flow regime. Chemical Engineering Science 49, 897-917.
Published
2020-07-10
How to Cite
Espinosa-Paredes, G., Cazarez-Candia, O., & Vázquez-Rodríguez, A. (2020). INTERFACIAL FORCES ON A BUBBLE GROWING WITH ECCENTRIC CELL MODEL. Revista Mexicana De Ingeniería Química, 6(1), 111-117. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1884