EFFECTS OF THE ELECTRONIC CORRELATION IN SOLIDS. METHODOLOGIES FOR ITS TREATMENT

  • E. Chigo-Anota
  • J. F. Rivas-Silva
Keywords: electronic correlation, computational quantum chemistry, ab-initio calculations

Abstract

The effects of electronic correlation have been considered to describe correctly the behavior of the different matter systems (molecules, and solids); these models have been studied by means of ab-initio calculations (first principles). There are two points of view for it: Computational Quantum Chemistry and Computational Solid State Physics. Some interpretations have been detailed for this interaction and some methodologies it has been discussed to try them and their level of approximation. Also some cases are cited.

References

Anisimov, V. I. y Gunnarsson, O. (1991). Density-functional calculation of effective Coulomb interactions in metals. Physical Review B 43, 7570-7574.

Chigo-Anota, E. y Rivas-Silva, J. F. (2004). La aproximación LDA+U en la teoría DFT. Revista Mexicana de Física E 50 (2), 88- 94.

Chigo-Anota E. y Rivas-Silva, J. F. (2006). Estudio all-electron de la estructura electrónica de sulfuros de actínidos XS (X=Th, Pu), Revista Cubana de Física (en prensa).

Anisimov, V. I., Aryasetiawan, F. y Lichtenstein, A. I. (1997). First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. Journal Physics: Condensed. Matter 9, 767-808.

Aryasetiawan, F. y Gunnarsson, O. (1998). The GW method. Report on Progress in Physics 61, 237-312.

Aryasetiawan, F., Biermann, F. S. y Georges, S. A. (2004). A first principles scheme for calculating the electronic structure of strongly correlated materials: GW+DMFT. arXiv:cond-mat/0401626. V1 Enero.

Ashcroft N. W. y Mermin N. D. (1976). Solid State Physics, Cap. 17, Saunders College Publishing.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange.Journal of Chemical Physics 98, 5648-5652.

Boucher, J., Siberchicot, B. Jollet, F. y Pasturel, A. (2000). Equilibrium properties of δ-Pu: LDA+U calculations (LDA≅local density approximation). Journal Physics: Condensed Matter 12, 1723-1733.

Blaha, P. K., Schwarz, K. y Luitz J. (1999) User’s Guide WIEN97. Viena, Austria.

Ceperly, D. M. y Alder, B. J. (1980). Ground State of the Electron Gas by a Stochastic Method. Physical Review Letter 45, 566-569.

Cerius2 versión 4.2 MatSci, Molecular Simulations (2000); consultar también la página de Internet www.accelryns.com/cerius2/

Comentario: Los electrones 5f presentan el carácter dual en el sentido de que algunos de los orbitales 5f nos llevan a la de localización cuando son ocupados por electrones mientras que otros resultan localizados. Consultar (a): http://www.ua.es/cuantica/docencia/a_qc/c apit-4/node4.htmll Consultar (b) la tercera referencia de [14] y segunda y tercera referencia de [48] para una revisión de las nuevas teorías generadas para el cálculo de la estructura electrónica.

Chigo-Anota E. y Rivas-Silva J. F. (2002a). Metodología para el Cálculo de la Estructura Electrónica de Materiales Sólidos. Revista Temas de Ciencia y Tecnología, 6 (18), 17-20.

Chigo-Anota E. (2002). El Laboratorio Virtual. Revista Avance Tecnológico y Sociedad,Año 8. No. 24, 33-37.; Chigo- Anota E. y Rivas-Silva J. F. (2004). La simulación computación en Física y Química. Revista, Digital Científica y Tecnológica e-Gnosis Vol. 2, Art. 15, 1-6.

Chigo-Anota, E. y Rivas-Silva, J. F. (2002b). Estructura electrónica del USb I. Un estudio ESOCS, P-LAPW y LMTO-ASA. Superficies y Vacío 14, 7-11.

Chigo-Anota, E., Rivas-Silva, J. F., Bautista H. A. y Riveros F. A. (2003). Estructura Electrónica del compuesto intermetálico CeFeGe3. Superficies y Vacío 16 (3), 17-21.

Chigo-Anota, E., Rivas, J. F. y Flores-Riveros, A. (2006). The Electronic Structure of USb: an LSDA+U study en arbitraje en Int. Journal Quantum Chemistry.

Chigo-Anota, E., Flores-Riveros, A. y Rivas-Silva, J. F. (2006) International Journal of Modern Physics B 20 (3), 287-301.

Chigo-Anota E. y Rivas-Silva J. F. (2005a). Propiedades electrónicas de los compuestos moleculares RaCl y ThO y los sólidos cristalinos UO y ThO2 obtenida mediante los pseudopotenciales ERC. Revista Colombiana de Física 37 (1), 17-25, aquí se encontraran modelos de cluster para los sólidos cristalinos UO y ThO2.

Chigo-Anota, E. y Rivas-Silva, J. F. (2005b). Fallas de la aproximación LDA (Local Density Approximation) en la teoría DFT (Density Functional Theory) en la descripción de sistemas fuertemente correlacionados Revista Colombiana De Física 37 (2), 405-417.

Chigo-Anota, E. y Rivas-Silva, J. F. (2006a). Análisis all-electron de la estructura electrónica del UO y ThO2 en la aproximación TB-LMTO-ASA, aceptado en Revista Cubana de Física 23 (1), xxx.

Chigo-Anota, E. y Rivas-Silva, J. F. (2006b). Estudio all-electron de la estructura electrónica de sulfuros de actínidos XS (X=Th, Pu), enviado Revista Cubana de Física.

Dovesi, R., Saunders, V. R. y Roetti, C. (1992). CRYSTAL92, An ab-initio Hartree-Fock LCAO program for periodic systems (1992); Pisani, C. Dovesi, R. y Roetti. C. (1998) Hartree-Fock Ab Initio Treatment of Crystalline Systems. Springer Verlag. Fig. tomada de: http:www.fkf.mpg.de/metzner/research//d mft/dmft.html

Forró, L. y Mihaly, L. (2001). Electronic properties of doped fullerenes. Report on Progress in Physics 64, 649-699;

Gunnarsson, O. (1996). Superconductivity in fullerides. Review of Modern Physics 69, 575-606 (1998) o en el archivo arXiv:condmat/ 9611150 V1Nov.

Frisch, A. E. y Frisch, M. J. (1996). User´s Reference (Gaussian, Inc. 1998); Foresman B. J. y Frisch Æ. Exploring Chesmitry with Electronic Structure Methods. Segunda Ed. Fulde, P. (1998). Solids with weak and strong electron correlations. arXiv:condmat/ 9803299 vol. 1 25. Marzo.

Fulde,P. (1999) in Electron Correlations in the Solid State, editado por N. H. March. Imp. Coll.. Press, p. 47-102 o en el archivo arXiv:cond-mat/9803299 (1998).

Chigo-Anota, E. y Rivas-Silva, J. F. (2003). Correlación electrónica fuerte: sistema con electrones 4f y 5f. Revista de la Sociedad Química de México 47 (3), 221-226.

He, Y., Gräfenstein, J. Kraka, E. y Cremer, D. (2000). What correlation effects are covered by density function theory?. Molecular Physics 98, 1639.

Held, K., Nekrasov, I. A. Keller, G. Eyert, V., Blümer, N., McMahan A. K., Scalettar, R. T., Pruschke, T., Anisimov, V. I. y Vollhardt D. (2002), publicado en Quantum Simulations of Complex Many - Body Systems From Theory to Algorithms, Lectures Notes, Editado por J.Grotendorst, D.Marx, A. Muramatsu 10, 175-209.

Hohenberg, P. y Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review 136, B864-B871; Kohn, W. y Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 140, A1133-A1138.

Kohn, W. Becke, A. D. y Parr, R. G. Journal of Physical Chemistry 100, 12974 -12980.

Jones, R. O. y Gunnarsson, O. (1989). The density functional formalism, its applications and prospects.Review of Modern Physics 61 (3), 689-746.

Kohn, W. (1999). Nobel Lecture: Electronic structure of matter wave functions and density functionals. Review of Modern Physics 71 (5), 1253 (1999); Capelle, K. (2005). A bird's-eye view of densityfunctional theory. arXiv:cond-mat/0211443 vol. 4 Agosto.

Jepsen, O., Krier, G., Burkhardt, A. y Andersen, O. K. (1995) The TB-LMTO-ASA program, Max-Planck Institute, Stuttgart, Germany.

Löwdin. P. O. (1959). Correlation Problem in Many-Eleetron Quantum Mechanies. I. Review of Different Approaches and Discussion of Some Current Ideas. Adv. Chem. Phys. 2, 207; para ver la teoría Hartree y Hartree-Fock consultar: Levente Szasz, The Electronic Structure of Atoms, Cap. 2, pag. 9-70. A Wiley-Interscience Publication (1992).

Zsabo, A. y Ostlund, N. L. (1996) Modern Quantum Chemistry, Introduction to advanced Electronic Structure Theory, Cap. 3, pag. 108-230. Dover Publications, Inc.

Chigo-Anota, E. (2000). Tesis de Maestría, Benemérita Universidad Autónoma de Puebla, México; http://es.geocities.com/echigoa/cee_solidos .htmll. Slater, J. C.(1951). A Simplification of the Hartree-Fock Method. Physical Review 81, 385-388; (1993). Hartree-Fock LAPW approach to the electronic properties of periodic systems. Physical Review B 48, 5058-5068.

Langreth, D. C. y Mehl, M. J. (1981). Easily Implementable Nonlocal Exchange- Correlation Energy Functional. Physical Review Letter 47, 446-450.; Hu, D. C. y Langreth, D. C. (1985). A Spin Dependen Version of the Langreth-Mehl Exchange- Correlation Functional. Physica Scripta. 32, 391-396.

Lee, C., Yang, W. y Parr, R.G. (1998). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37, 785-789.

Liu, W., Dolg, W. y Fulde, P. (1998). Calculated Properties of Lanthanocene Anions and the Unusual Electronic Structure of Their Neutral Counterparts. Inorganic Chemistry 37, 1067-1072.

Liu, W., Dolg, M. y Fulde, P. (1997). Low-lying electronic states of lanthanocenes and actinocenes M(C8H8)2 (M=Nd, Tb, Yb, U). Journal Chemical Physics 107, 3584-3591.

Lundin, U., Sandalov, I. Eriksson, O. y Johansson, B. (2000). Correlation mechanism of f-electron delocalization. Physical Review B 62, 16370-16377.

Runge, E. Fulde, P. Efremov D. V., Hasselmann, N. y Zwicknagl G .(2004). Approximative treatment of 5f-systems with partial localization due to intra-atomic correlations. arXiv:cond-mat/0402124 v1. Mazin, I. I. y Anisimov, V. I. (1997). Insulating gap in FeO: Correlations and covalency. Physical Review B 55 (19), 12822-12825.

Para algunas aplicaciones de dicho programa pueden ser encontradas en: Hadad, C. M. Foresman, J. B. y Wiberg, K. B. (1993). Excited States of Carbonyl Compounds. I. Formaldehyde and Acetaldehyde. Journal of Physical Chemistry 97 (17), 4293-4312.

Robinson de Souza, A., Ricardo Zambrano, J., Pomes y Hernández, R. (1998) Libro de resúmenes del XXIV Congreso Internacional de Químicos Teóricos de Expresión Latina, Pag. 42.

Sandoval-Ramírez, J., Meza Reyes, S., Meléndez, F. J. y Hernández-Linares, G. (2001). Obtención de la (R) – y (S)-6 acetiloxi-5-metil-2,3-hexanodiona, optimamente puras. Revista de la Sociedad Química de Mexico 45, 25-28.

Liang, B. y Andrews, L. (2002). Matrix Infrared Spectra and Quasirelativistic DFT Studies of ThS and ThS2 Journal of Physical Chemistry A 106, 4038-4041.

Perdew, J. P. y Wang, Y. (1986). Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B 33, 8800- 8802.

Perdew, J. P., Burke, K. y Ernzerhof, M. (1986). Generalized Gradient Approximation Made Simple. Physical Review Letter 77, 3865-3868.

Perdew, J. P. y Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlationenergy. Physical
Review. B 45, 13244-13249

Petit, L., Svane, A. Temmerman, W. M. y Szotek, Z. (2000). Valencies in actinides. Solid State Communication 116, 379-383.

Petit, L., Svane, A. Temmerman, W. M. y Szotek, Z. (2001). Self-interactioncorrected description of the electronic properties of americium monochalcogenides and monopnictides. Physical Review B 63, 165107(1)-165107(7).

Petit, L., Svane, A. Temmerman, W. M. y Szotek, Z. (2002). 5f Electron Localization-Delocalization Transition from UPd3 to UPt3. Physical Review Letter 88 (21), 216403(1) -216403(4).

Pickett, W. E. (1989). Electronic structure of the high-temperature oxide superconductors. Review of Modern Physics 61, 433-512. Pickett, W. E., Erwin, S. y Ethridge, E. C. (1996). Reformulation of the LDA+U method for a local orbital basis. arXiv:cond-mat/9611225 v3.

Ködderitzsch, D. Hergert, W., Temmerman W. M., Szotek Z., Ernst A. y Winter H. (2002). Exchange interactions in NiO and at the NiO (100) surface. Physical Review B 66, 064434-9.

Pueyo, F. (2005). Estructura electrónica en superficies y sólidos, http://www.uniovi.es/qcg/d-EstrElSol/. Slater, J. C. y Johnson, K. H. (1972). Self- Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids. Physical Review B 5, 844-853.

Lie, S. K., Taff, C. A. (1983). Investigation of the electronic structure,hyperfine interactions, and radial densities in the iron tetrahedral sulfides with the use of the multiplescattering Xα method. Physical Review B 28, 7308-7316.

Dunlap, B. I. (1982). Rate of self-consistent-field convergence in the X α method. Physical Review A 25, 2847-2849.

Fujima, K. Watanabe, T. y Adachi, H. (1985). Analysis of the electronic properties of extremely condensed matter by the discrete-variational Xα method: Application to cold dense neon plasma. Physical Review A 32, 3585-3595.

Nakatsugawa, H. y Iguchi, I. (1997). Transition phenomenon in Ti2O3using the discrete variational Xα cluster method and periodic shell model. Physical Review B 56, 12931-12938.

Manoli, S. y Whitehead, M. A. (1981). Method to introduce Coulomb-hole correlation in the Xα theory Physical Review A 23, 2150-2155.

Vaterlein, P. Fink, R. Umbach, E. y Wurth, W. (1998). Simulation of resonantly and offresonantly excited x-ray emission spectra: An application for the Xα scattered-wave method. Physical Review A 57, 4275-4278.

Slater, J. C. (1974). Quantum Theory of Molecules and Solids, Vol. IV, The Selfconsistent Field for Molecules and Solids, McGraw-Hill.

Schoenes, J. Vogt, O. Löhle, J. Hulliger, F. y Mattenberger, K. (1996). Variation of felectron localization in diluted US and Ute. Physical Review B 53, 14987-14995.

Takahashi, T. Sato, N. Yokoya, T. Chainani, A.,Morimoto, T. y Komatsubara T. (1995).Dual Character of 5f Electrons in UPd 2Al 3 Observed by High-Resolution Photoemission Spectroscopy. Journal of Physics Society Japan, 65, 156-159.

Metoki, N. Haga, Y. Koike, Y. y Onuki, Y. (1998). Superconducting Energy Gap Observed in the Magnetic Excitation Spectra of a Heavy Fermion SuperconductorUPd2Al3 .Physics Review Letter 80, 5417-5420.

Bernhoeft, N. Sato, N. Roessli, B. Aso, N. Hiess, A. Lander, G. H. Endoh, Y. y Komatsubara, T. (1998).Enhancement of Magnetic Fluctuations on Passing below Tc in the Heavy Fermion Superconductor UPd2Al3. Physics Review Letter 81, 4244-4247.

Yaounac, A. Dalmas de Réotier, P., Gubbens, P. C. M. Kaiser, C. T., Menovsky, A. A., Mihalik, M. y Cottrell, S. P. (2002). Evidence for Weak Itinerant Long-Range Magnetic Correlations in UGe2 Physical Review Letter 89, 147001.

Soderlind, P., Eriksson, O. Johansson, B. y Wills, J. (1994). Electronic properties of felectron metals using the generalized gradient approximation. Physical Review B 50, 7291-7294.

Jones, M. D., Boettger, J. C. Albers, R. C. y Singh, D. J. (2000). Theoretical atomic volumes of the light actinides. Physical Review B 61, 4644-4650; Savrasov, S. Y. y Kotliar, G. (2000). Ground State Theory of δ-Pu. Physical Review Letter 84, 3670-3673.

Stewart, G. R. (1984). Heavy-fermion systems. Rev. Mod. Phys. 56, 755-787; Fulde, P. (1988). Introduction to the theory of heavy fermions. Journal of Physics F: Metal Physics 18, 601-639.

Temmerman, W. E., Svane, A. Strange, P. Szotek, Z. y Winter, H. (2000). Systematics for trivalent and divalent rareearth sulphides. Philosophical Magazine B 80, 1179-1191Ç.

Von-Barth, U. y Hedin, L. (1972). A local exchange-correlation potential for the spin polarized case. i. Journal of Physic C 5 (3), 1629-1642.

Vosko, S. H., Wilk L. y Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analusis. Candian Journal of Physics 58, 1200-1211.

Yamasaki, A. y Fijiwara, T. (2001). Electronic structure of the MO oxides (M=Mg, Ca, Ti,V) in the GW Approximation. arXiv:condmat/0110430 v3 diciembre.

Zsabo, A. y Ostlund, N. L. (1996) Modern Quantum Chemistry, Introduction to advanced Electronic Structure Theory, Cap. 4, pag. 231-270 y Cap. 5, pag. 271-319 (para el Método de Cluster Acoplado) Dover Publications, Inc. (1996).

Boys. S. F. (1950). Electronic wavefunctions. I. A general method of calculation for stationary states of any molecular system.Proceedings of Real Society of London A 200, 542.

Zunger, A., Perdew, J. P. y Oliver, G. L. (1980). A self-interaction corrected approach to many-electron systems: Beyond the local spin density approximation. Solid State Communication 34, 933-936.

Perdew, J. P. y Zunger, A. (1981). Selfinteraction correction to density-functional approximations for many-electron systems. Physical Review B 23, 5048-5079.

Svane, A., Temmerman, W. M., y Szotek, Z: Lægsgaard, J. y Winter, H. (2000). Selfinteraction- corrected local-spin-density calculations for rare earth materials. International Journal Quantum Chemistry 77, 799-813.
Published
2020-07-11
How to Cite
Chigo-Anota, E., & Rivas-Silva, J. F. (2020). EFFECTS OF THE ELECTRONIC CORRELATION IN SOLIDS. METHODOLOGIES FOR ITS TREATMENT. Revista Mexicana De Ingeniería Química, 5(2), 105-117. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1886
Section
Article