Comparative and combinatorial study of Biogenic Bismuth nanoparticles with Silver Nanoparticles and Doxycycline against Multidrug Resistant Staphylococcus aureus BTCB02 and Salmonella typhi BTCB06

  • S. Iftikhar
  • M. Iqtedar
  • H. Saeed
  • M. Aftab
  • R. Abdullah
  • A. Kaleem
  • F. Aslam
Keywords: Bismuth, Silver, Nanoparticles, Minimum Inhibitory Concentration, Synergistic Effect


At the present time world is facing a turmoil due to emergence of diseases caused by antibiotic resistant pathogens. The current need is to find alternative ways of curing diseases led by these pathogens. In this context the current study was steered towards finding the potential of extracellularly synthesized biogenic bismuth nanoparticles BiNPs in combination with biogenic silver nanoparticles AgNPs and doxycycline hydrochloride against multidrug resistant pathogens. MIC value for BiNPs was 6 and 10mg/l and for biogenic AgNPs it was 16 and 18ug/l against Salmonella typhi BTCB06 and Staphylococcus aureus BTCB02, respectively. Whereas combination of BiNPs and doxycycline MIC was 3 and 5mg/l and for BiNPs and AgNPs it was 8 and 9ug/l for S. typhi and S. aureus, respectively. FICI value for the combination of BiNPs and Doxycycline was 0.75 against Salmonella typhi and Staphylococcus aureus, respectively. However the combination of AgNPs and BiNPs had FICI value 1 against both the test strains. Bismuth nanoparticles and doxycycline showed synergistic effect against both pathogens. BiNPs and AgNPs showed additive effect against both pathogens. Conclusively, biogenic BiNPs can be used as an excellent alternative alone or in combination in combating diseases caused by resistant pathogens.


Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., Abd-Elsalam, K. A. J. B., & Equipment, B. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. 29(2), 221-236.

Anwar, A., Perveen, S., Ahmed, S., Siddiqui, R., Shah, M. R., & Khan, N. A. (2019). Silver Nanoparticle Conjugation with Thiopyridine Exhibited Potent Antibacterial Activity Against Escherichia coli and Further Enhanced by Copper Capping. Jundishapur Journal of Microbiology, 12(3), 1-8.

Aritonang, H. F., Koleangan, H., & Wuntu, A. D. J. I. j. o. m. (2019). Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants’(Impatiens balsamina and Lantana camara) Fresh Leaves and Analysis of Antimicrobial Activity. 2019.

Barapatre, A., Aadil, K. R., & Jha, H. (2016). Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresources and Bioprocessing, 3(1), 8.

Bayroodi, E., & Jalal, R. (2016). Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Iranian journal of microbiology, 8(2), 85.

Bibi, N., Ali, Q., Tanveer, Z. I., Rahman, H., & Anees, M. (2019). Antibacterial efficacy of silver nanoparticles prepared using Fagonia cretica L. leaf extract. Inorganic and Nano-Metal Chemistry, 1-7.

Bouchard, L.-S., Anwar, M. S., Liu, G. L., Hann, B., Xie, Z. H., Gray, J. W., . . . Chen, F. F. (2009). Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proceedings of the National Academy of Sciences, 106(11), 4085-4089.

Calzada, M., Malic, B., Sirera, R., & Kosec, M. (2002). Thermal-decomposition chemistry of modified lead-titanate aquo-diol gels used for the preparation of thin films. Journal of sol-gel science and technology, 23(3), 221-230.

Cattaneo, A. G., Gornati, R., Sabbioni, E., Chiriva‐Internati, M., Cobos, E., Jenkins, M. R., & Bernardini, G. (2010). Nanotechnology and human health: risks and benefits. Journal of applied Toxicology, 30(8), 730-744.

Dell’Agli, G., Colantuono, A., & Mascolo, G. (1999). The effect of mineralizers on the crystallization of zirconia gel under hydrothermal conditions. Solid State Ionics, 123(1-4), 87-94.

Dodge, A. G., & Wackett, L. P. (2005). Metabolism of bismuth subsalicylate and intracellular accumulation of bismuth by Fusarium sp. strain BI. Applied and environmental microbiology, 71(2), 876-882.

Dong, F., Xiong, T., Sun, Y., Zhao, Z., Zhou, Y., Feng, X., & Wu, Z. (2014). A semimetal bismuth element as a direct plasmonic photocatalyst. Chemical Communications, 50(72), 10386-10389.

Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. J. F. i. M. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. 6, 453.

EUCAST. (2000). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clinical microbiology and infection, 6(9), 503-508.

Fang, J., Stokes, K. L., Wiemann, J., & Zhou, W. (2000). Nanocrystalline bismuth synthesized via an in situ polymerization–microemulsion process. Materials letters, 42(1-2), 113-120.

FDA. (2011). Doxycycline Monohydrate Capsules from

Figueiredo, E., Ribeiro, J., Nishio, E., Scandorieiro, S., Costa, A., Cardozo, V., . . . Kobayashi, R. (2019). New Approach For Simvastatin As An Antibacterial: Synergistic Effect With Bio-Synthesized Silver Nanoparticles Against Multidrug-Resistant Bacteria. International journal of nanomedicine, 14, 7975.

Fratini, F., Mancini, S., Turchi, B., Friscia, E., Pistelli, L., Giusti, G., & Cerri, D. (2017a). A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium JR et G. Forst essential oils against Staphylococcus aureus strains. Microbiological research, 195, 11-17.

Fratini, F., Mancini, S., Turchi, B., Friscia, E., Pistelli, L., Giusti, G., & Cerri, D. J. M. r. (2017b). A novel interpretation of the fractional inhibitory concentration index: the case Origanum vulgare L. and Leptospermum scoparium JR et G. Forst essential oils against Staphylococcus aureus strains. 195, 11-17.

Garcia, N., Kao, Y., & Strongin, M. (1972). Galvanomagnetic studies of bismuth films in the quantum-size-effect region. Physical Review B, 5(6), 2029.

Gotić, M., Popović, S., & Musić, S. (2007). Influence of synthesis procedure on the morphology of bismuth oxide particles. Materials letters, 61(3), 709-714.

Gustine, J. N., Au, M. B., Haserick, J. R., Hett, E. C., Rubin, E. J., Gibson, F. C., & Deng, L. L. (2019). Cell Wall Hydrolytic Enzymes Enhance Antimicrobial Drug Activity Against Mycobacterium. Current microbiology, 76(4), 398-409.

Hayes, W. J., & Laws, E. R. (1991). Handbook of pesticide toxicology Handbook of pesticide toxicology: Academic Press.

Hsueh, Y.-H., Lin, K.-S., Ke, W.-J., Hsieh, C.-T., Chiang, C.-L., Tzou, D.-Y., & Liu, S.-T. J. P. o. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. 10(12), e0144306.

Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., & Gu, M. B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress specific bioluminescent bacteria. Small, 4(6), 746-750.

Hwang, G. H., Han, W. K., Kim, S. J., Hong, S. J., Park, J. S., Park, H. J., & Kang, S. G. (2009). An electrochemical preparation of bismuth nanoparticles by reduction of bismuth oxide nanoparticles and their application as an environmental sensor. Journal of Ceramic Processing Research, 10(2), 190-194.

Hwang, I.-s., Hwang, J. H., Choi, H., Kim, K.-J., & Lee, D. G. (2012). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. Journal of medical microbiology, 61(12), 1719-1726.

Iftikhar, S. (2018). Extracellular synthesis and characterization of bismuth nanoparticles using soil isolates. Paper presented at the NEW TRENDS IN NATURAL SCIENCES-II: PUBLIC HEALTH, FOOD, NUTRITION AND SAFETY, Lahore.

Iftikhar, S., Iqtedar, M., Akhtar, M. S., Abdullah, R., Kaleem, A., Aihetasham, A., . . . Sharif, S. (2018). Bacillus mojavensis BTCB15-Mediated Synthesis of Silver Nanoparticles with Mosquito Larvicidal Activity Against Vector-Borne Diseases. Nanoscience and Nanotechnology Letters, 10(7), 943-949.

Iqtedar, M., Aslam, M., Akhyar, M., Shehzaad, A., Abdullah, R., & Kaleem, A. (2019). Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Preparative Biochemistry and Biotechnology, 49(2), 136-142.

Irobi, O., Moo-Young, M., Anderson, W., & Daramola, S. (1994). Antimicrobial activity of bark extracts of Bridelia ferruginea (Euphorbiaceae). Journal of Ethnopharmacology, 43(3), 185-190.

Ishwarya, R., Vaseeharan, B., Shanthini, S., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., . . . Al-anbr, M. N. (2019). Enhanced antibacterial activity of hemocyanin purified from Portunus pelagicus hemolymph combined with silver nanoparticles–Intracellular uptake and mode of action. Journal of Trace Elements in Medicine and Biology, 54, 8-20.

Kamatou, G., Viljoen, A., Van Vuuren, S., & Van Zyl, R. (2006). In vitro evidence of antimicrobial synergy between Salvia chamelaeagnea and Leonotis leonurus. South African Journal of Botany, 72(4), 634-636.

Karthik, K., Devi, K. S., Pinheiro, D., & Sugunan, S. (2019). Influence of surfactant on the phase transformation of Bi2O3 and its photocatalytic activity. Australian Journal of Chemistry, 72(4), 295-304.

Kharissova, O. V., & Kharisov, B. I. (2008). Nanostructurized forms of bismuth. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 38(6), 491-502.

Klostergaard, J., & Seeney, C. E. (2012). Magnetic nanovectors for drug delivery. Maturitas, 73(1), 33-44.

Lee, B., & Lee, D. G. (2019). Synergistic antibacterial activity of gold nanoparticles caused by apoptosis‐like death. Journal of Applied Microbiology.

Lei, J., Peng, L., Qiu, R., Liu, Y., Chen, Y., Au, C.-T., & Yin, S.-F. (2019). Establishing the correlation between catalytic performance and N→ Sb donor–acceptor interaction: systematic assessment of azastibocine halide derivatives as water tolerant Lewis acids. Dalton Transactions, 48(23), 8478-8487.

Li, W. (2006). Facile synthesis of monodisperse Bi2O3 nanoparticles. Materials chemistry and physics, 99(1), 174-180.

Liu, X., Ma, L., Chen, F., Liu, J., Yang, H., & Lu, Z. (2019). Synergistic antibacterial mechanism of Bi2Te3 nanoparticles combined with the ineffective β-lactam antibiotic cefotaxime against methicillin-resistant Staphylococcus aureus. Journal of inorganic biochemistry, 196, 110687.

Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., . . . Che, C.-M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of proteome research, 5(4), 916-924.

López-Salinas, F., Martínez-Castañón, G., Martínez-Mendoza, J., & Ruiz, F. (2010). Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi. Materials letters, 64(14), 1555-1558.

Mahmoud, W. M., Abdelmoneim, T. S., & Elazzazy, A. M. J. F. i. m. (2016). The impact of silver nanoparticles produced by Bacillus pumilus as antimicrobial and nematicide. 7, 1746.

Mala, R., Arunachalam, P., & Sivasankari, M. (2012). Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. Journal of Cell and Tissue Research, 12(2), 3249.

Martín-Arbella, N., Bretos, I., Jiménez, R., Calzada, M., & Sirera, R. (2011). Metal complexes with N-methyldiethanolamine as new photosensitive precursors for the low-temperature preparation of ferroelectric thin films. Journal of Materials Chemistry, 21(25), 9051-9059.

Mégraud, F. (2012). The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therapeutic advances in gastroenterology, 5(2), 103-109.

Mulder, M., Radjabzadeh, D., Hassing, R., Heeringa, J., Uitterlinden, A., Kraaij, R., . . . Verbon, A. (2019). The effect of antimicrobial drug use on the composition of the genitourinary microbiota in an elderly population. BMC microbiology, 19(1), 9.

Narkar, M., Sher, P., & Pawar, A. (2010). Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech, 11(1), 267-277.

Nazari, P., Faramarzi, M., Sepehrizadeh, Z., Mofid, M., Bazaz, R., & Shahverdi, A. (2012). Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation. IET nanobiotechnology, 6(2), 58-62.

Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy, 52(1), 1-1.

Odeyemi, S., De La Mare, J., Edkins, A. L., Afolayan, A. J. J. J. o. C., & Medicine, I. (2019). In vitro and in vivo toxicity assessment of biologically synthesized silver nanoparticles from Elaeodendron croceum. 16(3).

Pérez-Mezcua, D., Sirera, R., Jiménez, R., Bretos, I., De Dobbelaere, C., Hardy, A., . . . Calzada, M. L. (2014). A UV-absorber bismuth (III)-N-methyldiethanolamine complex as a low-temperature precursor for bismuth-based oxide thin films. Journal of Materials Chemistry C, 2(41), 8750-8760.

Pornpattananangkul, D., Fu, V., Thamphiwatana, S., Zhang, L., Chen, M., Vecchio, J., . . . Zhang, L. (2013). In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids. Advanced healthcare materials, 2(10), 1322-1328.

Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology, 2(1), 3.

Sathishkumar, M., Sneha, K., Won, S., Cho, C., Kim, S., & Yun, Y. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.

Shakibaie, M., Hajighasemi, E., Adeli-Sardou, M., Doostmohammadi, M., & Forootanfar, H. (2019). Antimicrobial and anti-biofilm activities of Bi subnitrate and BiNPs produced by Delftia sp. SFG against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. IET nanobiotechnology, 13(4), 377-381.

Sharples, J. W., & Collison, D. (2014). The coordination chemistry and magnetism of some 3d–4f and 4f amino-polyalcohol compounds. Coordination chemistry reviews, 260, 1-20.

Souza, J. A. S., Barbosa, D. B., do Amaral, J. G., Monteiro, D. R., Gorup, L. F., de Souza Neto, F. N., . . . Agostinho, A. M. (2019). Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian journal of microbiology, 59(2), 147-153.

Thormar, H. (2011). Lipids and essential oils as antimicrobial agents: Wiley Online Library.

Vega-Jiménez, A., Almaguer-Flores, A., Flores-Castañeda, M., Camps, E., Uribe-Ramírez, M., Aztatzi-Aguilar, O., & De Vizcaya-Ruiz, A. (2017). Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications. Nanotechnology, 28(43), 435101.

Vera Robles, L. I., Escobar Alarcón, L., Picquart, M., Hernández Pozos, J. L., & Haro Poniatowski, E. (2016). A biological approach for the synthesis of bismuth nanoparticles: using thiolated M13 phage as scaffold. Langmuir, 32(13), 3199-3206.

Wang, K., Xu, J.-J., & Chen, H.-Y. (2005). A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine–glucose oxidase biocomposite. Biosensors and Bioelectronics, 20(7), 1388-1396.

Wang, R., Zhang, B., Liang, Z., He, Y., Wang, Z., Ma, X., . . . Wang, J. (2019). Insights into rapid photodynamic inactivation mechanism of Staphylococcus aureus via rational design of multifunctional nitrogen-rich carbon-coated bismuth/cobalt nanoparticles. Applied Catalysis B: Environmental, 241, 167-177.

WHO. (2018). Typhoid Retrieved 23/10/2019, 2019, from

Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163.

Wu, J., Yang, H., Li, H., Lu, Z., Yu, X., & Chen, R. (2010). Microwave synthesis of bismuth nanospheres using bismuth citrate as a precursor. Journal of alloys and compounds, 498(2), L8-L11.

Xia, F., Xu, X., Li, X., Zhang, L., Zhang, L., Qiu, H., . . . Gao, J. (2014). Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-nitrophenol. Industrial & Engineering Chemistry Research, 53(26), 10576-10582.

Xiong, Y., Wu, M., Ye, J., & Chen, Q. (2008). Synthesis and luminescence properties of hand-like α-Bi2O3 microcrystals. Materials letters, 62(8-9), 1165-1168.

Yang, Q., Li, Y., Yin, Q., Wang, P., & Cheng, Y.-B. (2002). Hydrothermal synthesis of bismuth oxide needles. Materials letters, 55(1-2), 46-49.

Yu, S. j., Chao, J. b., Sun, J., Yin, Y. g., Liu, J. f., & Jiang, G. b. (2013). Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environmental science & technology, 47(7), 3268-3274.

Zhao, Y., Zhang, Z., & Dang, H. (2004). A simple way to prepare bismuth nanoparticles. Materials letters, 58(5), 790-793.

How to Cite
Iftikhar, S., Iqtedar, M., Saeed, H., Aftab, M., Abdullah, R., Kaleem, A., & Aslam, F. (2020). Comparative and combinatorial study of Biogenic Bismuth nanoparticles with Silver Nanoparticles and Doxycycline against Multidrug Resistant Staphylococcus aureus BTCB02 and Salmonella typhi BTCB06. Revista Mexicana De Ingeniería Química, 20(1), 271-280.

Most read articles by the same author(s)