PRODUCTION OF EXTRACELLULAR CHITINASES FROM ALKALOPHILIC MODERATELY HALOPHILIC Streptomyces sp. ISOLATED OF SHRIMP WASTE

  • L. Sastoque- Cala Laboratorio de Biotecnología Aplicada. Grupo de Biotecnología Ambiental e Industrial. Departamento de Microbiología. Pontificia Universidad Javeriana
  • M. Mercado-Reyes Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial. Departamento de Microbiología. Universidad Javeriana
  • M.M. Martínez-Salgado Laboratorio de Ambiental y de suelos. Grupo de Biotecnología Ambiental e Industrial. Departamento de Microbiología. Universidad Javeriana
  • B. Quevedo-Hidalgo Laboratorio de Biotecnología Aplicada. Grupo de Biotecnología Ambiental e Industrial. Departamento de Microbiología. Pontificia Universidad Javeriana
  • A.M. Pedroza-Rodríguez Laboratorio de Biotecnología Aplicada. Grupo de Biotecnología Ambiental e Industrial. Departamento de Microbiología. Pontificia Universidad Javeriana
Keywords: Streptomyces sp, waste shrimp, Colloidal chitin, Chitinase activity

Abstract

Nine strains were isolated from a shrimp waste in Cartagena Colombia. Different morphological groups were identifying: Gram-positive coccus, Gram-positive bacillus and actinomycetes. The strain 9A identified as Streptomyces sp was the best strain reaching significantly quantities (p<0.05) of sugars reducers associated with quitinolytic activity (0.035 U l-1) in a medium with colloidal chitin to alkaline pH (9.2) and high concentrations of NaCl (6% p/v). This microorganism could be alkalophilic and moderately halophilic bacteria. By means of an experimental design 22 were demonstrated that the interaction of the two chitin types (colloidal chitin and waste shrimp) in their higher concentrations increased significantly (p<0.05) the enzymativ activity 0.120 U l-1 after 16 days of evaluation. Using the modified medium was carried out the final kinetics to Erlenmeyer flasks scale finding a positive correlation between cellular viability and enzymatic activity (p<0.05), demonstrating that these substrates were used as carbon source and they acted as inducer of the enzymatic activity 0.156 U l-1 after 26 day of growth. Finally Streptomyces sp was able to degrade waste shrimp to 1% p/v in a water suspension at pH 9.2 stabilized with NaCl to 1% p/v under minimum nutritional conditions after 8 days the treatment.

References

Bertus, V. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology 6, 213–218.

Blackburn, R.S. (2004). Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environmental Science Technology 38, 4905–9.

Cottrell, M.T., Moore, J.A., Kirchman, D.L. (1999). Chitinases from uncultured marine microorganisms. Applied Environmental Microbiology 65, 2553–2557.

Coutiño, L., Marín, M., Huerta, S., Revah, S., Shirai, K. (2006). Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases. Process Biochemistry 41, 1106–1110.

Dao, Z., Zhang, L.N., Zhou, J.P., Guo, S.L. (2004). Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. Journal Applied Polymer Science 94, 684–91.

Felse, P. A., Panda, T. (2000). Production of microbial chitinases – A revisit. Bioprocess Engineering 23, 127-134.

Felse, P. A., Panda, T. (1999). Studies on applications of chitin and its derivatives. Bioprocess Engineering 20, 505-512.

Figueroa, F. S. (2000). Identificación de géneros bacterianos en camarón. Panorama Acuícola 48 – 51.

Galinski y Truper. (1994), Microbial behavior in salt stresses ecosystems. FEMS Microbiology Review 15, 95-108.

Gildberg, A., Stenberg, EA. (2001). A new process for advanced utilization of shrimp waste. Process Biochemistry 36, 809–12.

Guo, Sh., Chen, J., Lee, W. (2004). Purification and characterization of extracellular chitinase from. Aeromonas schubertii. Enzyme and Microbial Technology 35, 550–556.

Horikashi, K. (1999). Alkalophiles: Some Applications of Their Products for Biotechnology. Microbiology And Molecular Reviews 63, 4, 735-750.

Howard, B. M., Hutcheson, S. (2003). Detection and characterization of chitinases and other chitinmodifying enzymes. Journal Industrial Microbiology Biotechnology 30, 627 – 635.

Imanaka, T., Fukui, T., Fujiwara, S. (2001). Chitinase from Thermococcus kokakaraensis KOD1. Methods Enzymology 330, 319–29.

Jeraj, N., Kunic, B., Lenasi, H., Breskvar, Katja. (2006). Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans. Enzyme and Microbial Technology 34, 25-32.

Kezuka, Y., Ohishi, M., Itoh, Y., Watanabe, J., Mitsutomi, M., Watanabe, T. and Nonaka, T. (2006). Structural Studies of a Two-domain Chitinase from Streptomyces griseus HUT6037 Journal Molecular Biology 358, 472–484.

Mahadevan, B., Crawford, D.L. (1997). Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme and Microbial Technology 20, 489-493.

Martínez-Salgado, M. (2003). Evaluación de cepas antagónicas de Actinomycetos y Trichoderma spp. Aislados a partir de suelos de cultivos de arroz (Oryza sativa) para el control de Rhizoctonia solana. Mundo Microbiológico 2, 9 – 14.

Mata, J. (2006). Caracterización de exopolisacários producidos por microorganismos halófilos pertenecientes a los géneros Halomonas, Alteromonas, Ideomarina, Palleromonas y Salipinger. Tesis de Doctorado. Universidad de Grabana. España. Pg 3-5.

Matsumoto, Y., Saucedo-Castañeda, G., Revah, S., Shirai, K. (2004). Production of β-Nacetylhexosaminidase of Lecanicillium lecanii by solid state and submergedfermentations utilizing shrimp waste silage as substrate and inducer. Process Biochemistry 39, 665–71.

Meza, R. A., Monroy, A. F., Mercado, M., Poutou, R. A., Rodríguez, P., Pedroza, A. M. (2004). Study of the Stability in Real Time of Cryopreserved Strain Banks. Universitas Scientiarum 9, 235-42.

Miller, G. (1958). Use or Dinitrosalicilic Acid Reagent for Determination of Reducing Sugar. Analytical chemistry 35, 426-428.

Montgomery, D.C. (2003) Diseño y análisis de experimentos. Editorial Limusa. Segunda edición. Pg. 218- 276.

Patel, R., Dodia, M., Satya P. Singh, B. (2005). Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp: Production and optimization. Process Biochemistry 40, 3569–3575.

Podar, M., Reysenbach, A.L. (2006). New opportunities revealed by biotechnological explorations of extremophiles. Current Opinion in Biotechnology 17, 1–6.

Richard, J.L. Meanwell, P., Shama, G. (2006).Chitin in a dual role as substrate for Streptomyces griseus and as adsorbent for streptomycin produced during fermentation. Enzyme and Microbial Technology 38, 657–664.

Sahai, A.S., Manocha, M.S. (1993). Chitinases of fungi and plants: their involvement in morphogenesis and host–parasite interaction. FEMS Microbiology Review 11, 317–38.

Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M. y Moriguchi, M. (1998). Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH1, isolated from chitin-containing compost. Applied Environmental Microbiology 64, 3397-3402.

Schrempf, H. (2001). Recognition and degradation of chitin by Streptomycetes, Antonie Van Leeuwenhoek. International Journal Genectic Molecular Microbiology 79, 285–9.

Serrano, JA., Sandoval, AH., Ramirez, N., Ventosa, A. (2003). Método simplificado para el estudio morfológico por microscoía óptica y microscopía electrónica de barrido de Actinomicetos halófilos. Revista de la Sociedad Venezolana de Microbiología 23, 1-9.

Shang-Hsin, G., Jeen-Kuan, C., Wen-Chien, L. (2004). Purification and characterization of extracellular chitinase from Aeromonas schubertii Taiwan. Enzyme and Microbial Technology 35, 550–556.

Trejo-Estrada, SR., Paszczynski, A., Crawford, D.L. (1998). Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. Journal Industrial Microbiology Biotechnology 21, 81– 87.

Warren, R. (1996). Microbial hydrolysis of polysaccharides. Annals Review Microbiology 50, 183-212.

Watanabe, T., Oyanagi, W., Suzuki, K., Tanaka, H. (1990). Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. Journal Bacteriology 172, 4017–22.

Yu, C, A., M. Lee., B. L. Bassier and S. Roseman. (1991). Chitin utilization by marine bacteria. Journal Biology Chemistry 266, 24260-24266.

Zhang, W., Xue, Y., Ma, Y., Zhou, P., Ventosa, A., Grant, W.D. (2002). Salinicoccus alkaliphilus sp. nov.: a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. International Journal Systematic Evolution Microbiology 52, 789–93.
Published
2020-07-13
How to Cite
Sastoque- Cala, L., Mercado-Reyes, M., Martínez-Salgado, M., Quevedo-Hidalgo, B., & Pedroza-Rodríguez, A. (2020). PRODUCTION OF EXTRACELLULAR CHITINASES FROM ALKALOPHILIC MODERATELY HALOPHILIC Streptomyces sp. ISOLATED OF SHRIMP WASTE. Revista Mexicana De Ingeniería Química, 6(2), 137-146. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1889
Section
Biotechnology