• R. Zanella Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM)
  • L. Cedeño-Caero Unidad de Investigación en Catálisis, Depto. de Ing. Química, Facultad de Química, UNAM
  • O. Viveros Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM
  • E. Mireles Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM)
Keywords: Gold, silver, oxidesulfurization, titanium oxide, nanoparticles


Gold and silver nanoparticles supported on TiO2, with several metal loadings, were tested as catalysts in the oxidesulfurization (ODS) of organosulfur compounds. The catalysts were prepared by deposition precipitation method, and characterized by electron microscopy (TEM and HRTEM) to obtain the average particle size and the morphology of metal particles, and by EDS to evaluate metal loading on the support. Results show that gold and silver nanoparticles highly dispersed on the TiO2 surface are active in ODS of organosulfur compounds. The catalytic performance of gold and silver nanoparticles was different. For silver catalysts, it is propose that the better-crystallized particles are more active when the temperature of thermal treatment is increased and sulfone production is improved. For gold catalysts, the sulfone production is improved at low temperature of thermal treatment.


Aida, T., Yamamoto, D., Iwata, M., Sakata, K. (2000). Development of oxidative desulfurization process for diesel fuel, Reviews of Heteroatom Chemistry 22, 241- 256

Akita, T., Lu, P., Ichikawa, S., Tanaka, K., Haruta, M., (2001). Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surface and Interface Analysis 31, 73-78.

Babich, I.V., Moulijn, J.A. (2003). Science and technology of novel process for deep desulfurization of oil refinery streams: a review. Fuel 82, 607-631.

Bamwenda, G. R., Tsubota, S., Nakamura, T., Haruta, M., (1997). The influence of the prepreparation methods on the catalytic activity of Pt and gold supported on TiO2 for CO oxidation. Catalysis Letters 44, 83-97.

Bradford, M. C. J., Fuentes, D. X., (2002). A possible role for surface carbon during ethylene epoxidation over silver catalysts. Catalysis Communications 3(2), 51-60.

Becerra, S., Gómez, H., Navarro, J., Cedeño, L. (2006). Efecto del proceso de extracción sobre la desulfuración oxidativa de compuestos benzotiofénicos. Revista Mexicana de Ingeniería Química 5(3) 301-310.

Belen Kii, (1990), Chemistry of organosulfur compounds. General problems. Ellis Horwood Series in Organic Chemistry.

Boccuzzi, F., Chiorino, A., Manzoli, M., Andreeva, D., Tabakova, T., Ilieva, L., Iadakiev, V., (2002). Gold, Silver and copper catalysts supported on TiO2 for pure hydrogen production. Catalysis Today 75, 169-175.

Bond, G. C., Thompson, D. T., (1999). Catalysis by Gold. Catalysis Reviews-Science and Engineering 41(3 & 4), 319-388.

Cedeño, L., Hernández, E., Pedraza, F., Murrieta, F. (2005a). Oxidative desulfurization of synthetic diesel using supported catalysts. part I. Study of the operation conditions with vanadium oxide based catalyst. Catalysis Today 107-108, 564-569.

Cedeño, L., Martínez-Abarca, E., Gómez-Díaz, M., Pedraza-Archila, F. (2005b) Desulfuración de organoazufrados presentes en diesel por oxidación y extracción. Parte I. Catalizadores de cobre soportados. Revista Mexicana de Ingeniería Química 4, 241-252.

Cedeño, L., Navarro, A. J. F., Gutiérrez-Alejandre, A. (2006). Oxidative desulfurization of synthetic diesel using supported catalysts. Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catalysis Today 116, 562-568.

Claus, P., Hofmeister, H., (1999). Electron Microscopy and catalytic study of silver catalysts: Structure sensitivity of the hydrogenation of crotonaldehyde. Journal of Physical Chemistry B 103, 2766-2775.

Chapados, D., Gore, W. L., Bonde, S.E., Dolbear, G., Skov, E. (2000). Desulfurization by selective oxidation and extraction of sulfur containing compounds to economically achieve ultra low proposed diesel fuel sulfur requirements, Annual Meeting NPRA Paper No. AM-00-25.

Epling, W. S., Hoflund, G. B., Minahan, D. M., (1997). Study of Cs-Promoted, [alpha]- Alumina-Supported Silver, EthyleneEpoxidation Catalysts. Journal of Catalysis 171(2), 490-497.

Gang, L., Anderson, B. G., Grondelle, J. v., Santen, R. A. v., (2003). Low temperature selective oxidation of ammonia to nitrogen on silverbased catalysts. Applied Catalysis B 40, 101- 110.

Gómez, B.H., Cedeño, C.L. (2005). Solvent effects during oxidation-extraction desulfurization process of aromatic sulfur compounds from fuels. International Journal of Chemical Reactor Engineering 3, A28. www.bepress.com/ijcre/vol3/A28.

Gómez, B.H., Cedeño, C.L. (2006). Efecto de la temperatura en el proceso de oxidación y extracción de compuestos dibenzotiofenicos del diesel. Revista Mexicana de Ingeniería Química 5(3) 269-277.

Grünert, W., Brückner, A., Hofmeister, H., Claus, P., (2004). Structural Properties of Ag/TiO2 catalysts for acrolein hydrogenation. Journal of Physical Chemistry B 108, 5709-5717.

Haruta, M., (1997a). Novel catalysis of gold deposited on metal oxides. Catalysis Surveys Japan 61-73.

Haruta, M., (1997b). Size- and support-dependency in the catalysis of gold. Catalysis Today 36, 153-166.

Haruta, M., (2002). Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6, 102- 115.

Haruta, M., (2003). When gold is not noble: Catalysis by nanopaticles. Chemical Record 3, 75-87.

Haruta, M., Kageyama, H., Kamijo, N., Kobayashi, T. y Delannay, F., (1988a). Fine Structure of novel gold catalysts prepared by coprecipitation. Studies in Surface Science and Catalysis 44, 33-42.

Haruta, M., Kobayashi, T., Sano, H., Yamada, N., (1987). Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chemistry Letters 2, 405-408.

Haruta, M., Saika, K., Kobayashi, T., Tsubota, S., Nakahara, Y., (1988b). Preparation and catalytic properties of gold dispersed on beryllium oxide. Chemistry Express 3, 159- 162.

Hulea, V., Fajula, F., Bousquet, J. (2001), Mild oxidation with H2O2 over Ti-containing molecular sieves. A very efficient method for removing aromatic sulfur compounds from fuels. Journal of Catalysis 198, 179-186.

Ishihara, A., Wang, D., Dumeignil, F., Amano, H., Qian, E.W., Kabe, T. (2005). Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuos flow process. Applied Catalysis 279, 279-287.

Kozlov, A. I., Kozlova, A. P., Asakura, K., Matsui, Y., Kogure, T., Shido, T., Iwasawa, Y., (2000). Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and AsPrecipitated Metal-Hydroxide Precursors: Effect of Preparation Conditions on the Catalytic Performance. Journal of Catalysis 196, 56-65.

Kozlov, A. I., Kozlova, A. P., Liu, H., Iwasawa, Y., (1999). A new approach to active supported Au catalysts. Applied Catalysis. A 182, 9-28.

Mavrikakis, M., Stoltze, P., Noskov, J. K., (2000). Making gold less noble. Catalysis Letters 64, 101-106.

Minahan, D. M., Hoflund, G. B., (1996). Study of Cs-Promoted, [alpha]-Alumina-Supported Silver Ethylene-Epoxidation Catalysts: I. Characterization of the Support and AsPrepared Catalyst. Journal of Catalysis 158(1), 109-115.

Moreau, P., Hulea, V., Gomez, S., Brunel, D., Di Renzo, F. (1997). Oxidation of sulfoxides to sulfones by hydrogen peroxide over Ticontaining zeolites. Applied Catalysis A:Gral. 155, 253-263.

Murata, S., Murata, K., Kidena, K., Nomura, M. (2004). A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehides. Energy & Fuels 18, 116-121.

Oliveira, A. L. d., Wolf, A., Schüth, F., (2001). Highly selective propene epoxidation with hydrogen/oxygen mixtures over titaniasupported silver catalysts. Catalysis Letters 73(2-4), 157-160.

Orozco, F. (1985), Análisis químico cuantitativo. 16ª ed. Ed. Porrúa, México D.F.

Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., Kabe, T. (2000). Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels 14, 1232-1239.

Sano, T., Negishi, N., Mas, D., Takeuchi, K., (2000). Photocatalytic Decomposition of N2O on Highly dispersed Ag+ ions on TiO2 prepared by photodeposition. Journal of Catalysis 194, 71-79.

Siva-Kumar, V., Nagaraja, B. M., Shashikala, V., Padmasri, A. H., Madhavendra, S. S., Raju, B. D., Rao, K. S. R., (2004). Highly efficient Ag/C catalyst prepared by electron-chemical deposition method in controlling microorganisms in water. Journal of Molecular Catalysis A 223, 313-319.

Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today 86, 211-263

Te, M., Fairbridge, C., Ring, Z. (2001), Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Applied Catalysis A: Gral. 219, 267- 280.

Valden, M., Lai, X., Goodman, D. W., (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the appearance of Nonmetallic Properties. Science 281, 1647-1650.

Wang D., Qian E.W., Amano H., Okata K., Ishihara A., Kabe T. (2003), Oxidative desulfurization of fuel oil. Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: Gral. 253, 91-99.

You, X., Chen, F., Zhang, J., Anpo, M., (2005). A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catalysis Letters 102(3-4), 247-250.

Zanella, R., Giorgio, S., Henry, C. R., Louis, C., (2002). Alternative methods for the preparation of gold nanoparticles supported on TiO2. Journal of Physical Chemistry B, 106(31), 7634-7642.

Zanella, R., Giorgio, S., Shin, C. H., Henry, C. R., Louis, C., (2004a). Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. Journal of Catalysis 222, 357-367.

Zanella, R., Louis, C., Giorgio, S., Touroude, R., (2004b). Crotonaldehyde Hydrogenation by Gold Supported on TiO2: Structure Sensitivity and Mechanism. Journal of Catalysis 223, 328-339

Zanella, R., Louis, C., (2005). Influence of the condition of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catalysis Today 107-108, 768-777.

Zanella, R., Delannoy, L., Louis, C., (2005). Mechanism of deposition of gold precursors onto TiO2 during preparation by depositionprecipitation with NaOH and with urea and by cation adsorption. Applied Catalysis A: Gral. 291, 62-72.

Zhang, Y., Chen, F., Zhuang, J., Tang, Y., Wang, D., Wang, Y., Dong, A., Ren, N., (2002). Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chemical Communications 2814-2815.
How to Cite
Zanella, R., Cedeño-Caero, L., Viveros, O., & Mireles, E. (2020). OXIDESULFURIZATION OF ORGANOSULFUR COMPOUNDS WITH GOLD AND SILVER CATALYSTS SUPPORTED ON TITANIA. Revista Mexicana De Ingeniería Química, 6(2), 147-156. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1890
Catalysis, kinetics and reactors