• F. Cœuret Lab. Thermocinétique, UMR CNRS 6607, E.P.U.N
  • T.Z. Fahidy Dept. of Chemical Engineering, University of Waterloo
Keywords: electrochemical cell, opposite disks, mass transport, scale-up


The paper deals with theoretical aspects of scaling-up, and concerns an electrochemical cell working under isothermal mass transport control. The cell contains two closely-facing parallel circular disk electrodes [radius R2, separation distance 2a]. The electrolyte enters the cell through a central circular hole [radius R1] in one disk and flows radially between the disks in the laminar flow regime. Specifically, the work deals with the effect of the scale on stationary liquid-to-disk mass transport. Three cells were used, allowing a maximum scale factor of 12.5. Dimensional analysis of the mass transport problem yields the five dimensionless numbers R2/R1, 2a/(R2-R1), Re, Sh and Sc, to be correlated as:


where the coefficient and the numerical exponents α, β, γ, follow from experiments. It is shown how scale-up is approached when the objective is to conserve the mass transport characteristics of a cell. The values of the dimensionless numbers calculated from the experimental data allow the establishment of an empirical correlation valid in a given range of the scale factor, and comparison with an approximate theoretical analytical solution. It is shown how scaling-up considerations are handled, what difficulties are and how, in the absence of a rigorous theoretical solution, experimental results can be employed for cell design up to industrial scale.


Ashworth, G.A. y Jansson, R.E.W. (1977). Mass Transfer and Pressure Distribution in Capillary Gap Cells. Electrochim. Acta 22, 1295-1299.

Beck, F. y Guthke, H. (1969). Entwicklung neuer Zellen fuer elektro-organische Synthesen. Chemie-Ing.-Techn. 41, 943- 950.

Bird, R., Stewart, W.E. y Lightfoot, E.N. (1964). Fenómenos de Transporte, Ed. Reverté, Barcelona. Cœuret, F. (1992). Introducción a la Ingeniería Electroquímica, 215-223, Ed. Reverté, Barcelona.

Cœuret, F. y Fahidy, T.Z. (2001). Steady-state Mass Transport at Stationary Discs under Divergent Laminar Radial Flow Conditions. Journal of Applied Electrochemistry 31, 671- 676.

Cœuret, F. y Fahidy T.Z. (2002). Transfert de Matière Liquide-Disque dans l’Ecoulement Radial Divergent entre Disques Fixes de Grand Diamètre. Entropie (Paris) n°238, 30- 37.

Cœuret, F. (2003). Ingénierie des Procédés Electrochimiques, 203-212, Ellipses, Paris.

Dworak, R. y Wendt, H.(1976). Hydrodynamics and Mass Transfer Within the Cylindrical Capillary Gap Electrolysis Cell., Ber. BunsenGessellschaft 80, 77- 80.

Fahidy, T.Z. (1985). Principles of Electrochemical Reactor Analysis, Elsevier, Amsterdam.

Fahidy, T.Z. y Cœuret, F. (2003). Transfert de matière liquide-disque dans l’écoulement radial divergent entre disques – étude portant sur différentes échelles du système. Canadian Journal of Chemical Engineering 81, 297- 302.

Horn, R.K. (1979). Similarity of Flow in Disc Stack Cells. A.I.Ch.E. Symposium Series n°185, 75, 125-127.

Johnstone, R.E. y Thring M.W.(1957). Pilot Plants, Models, and Scale-up Methods in Chemical Engineering, Mc Graw Hill, Nueva York.

Pickett, D.J. (1979). Electrochemical Reactor Design, 536, Elsevier, Amsterdam.

Selman, R. y Tobias, C.W. (1978). Mass Transfer Measurements by the Limiting Current Technique. Advances in Chemical Engineering, 10, 86, Academic Press, New York.
How to Cite
Cœuret, F., & Fahidy, T. (2020). SCALE UP OF AN ELECTROCHEMICAL CELL OF TWO FACING DISKS WITH RADIAL DIVERGENT LAMINAR FLOW. Revista Mexicana De Ingeniería Química, 6(2), 211-217. Retrieved from
Process engineering