Influence of retinyl palmitate on nucleation and growth kinetics in batch sugarcane crystallization

  • P.A. Quintana-Hernández
  • X.M. Medina-Galván
  • D. Maldonado-Caraza
  • J.N. Reyes-Valadez
Keywords: Crystal morphology, kinetics parameters, modelling, nucleation and growth rates, shape factors


The influence of retinyl palmitate (RP) on nucleation and growth kinetics, in the sugarcane fortification process, is analyzed.  Batch cooling crystallization experiments using natural and linear profiles were carried out adding different amounts of RP. At each experiment, sugar concentration, crystal mass and crystal size distribution were measured as a function of time. Nucleation and growth rates were determined experimentally and kinetic parameters were determined using power-law type relations. At the end of each experiment, crystals were observed in microscope and morphological changes were analyzed. The results showed that the presence of RP in the fortification process of sugar generated a decrease in both nucleation and growth rates. The decrement was bigger when the initial concentration of RP increased. Moreover, it was observed that fortified crystals suffer morphological changes into their habit.


Bolaños, R.E., Xaca, X.O., Álvarez, R.J. and López, Z.L. (2008). Effect analysis from dynamic regulation of vacuum pressure in adiabatic batch crystallizer using data and image acquisition. Industrial and Engineering Chemistry Research 47, 9426-9436.
Contreras-Velázquez, L.M. and Hernández-León, R.A. (2005). Solubilidad de la sacarosa en presencia de materias extrañas de caña integral. Centro Azúcar 32(3), 9-13.
Garside, J. and Davey, R.J. (1980). Secondary contact nucleation: Kinetics, growth and scale-up. Chemical Engineering Communications 4, 393-399. 10.1080/00986448008935918.
Jones, A.G. (2002). Crystallization Process Systems, First ed. Oxford: Butterworth-Heinemann, United Kingdom.
Kubota, N. (2001). Effect of impurities on the growth kinetics of crystals. Crystal Research and Technology 36, 749–769.<749::AID-CRAT749>3.0.CO;2-%23.
Medina-Galvan, X.M., Quintana-Hernández, P.A., Reyes-Valadez, J.N. and Fuentes Cortes, L.F. (2020) Determination of kinetic parameters of nucleation and growth for acetylsalicylic acid crystals in ethanol. Revista Mexicana de Ingeniería Química 19, 417-428.
Mersmann, A. and Kind, M. (1988). Chemical engineering aspects of precipitation from solutions. Chemical Engineering and Technology 11, 264-276.
Monaco, L.A. and Rosenberger, F. (1993). Growth an etching kinetics of tetragonal lysozyme. Journal of Crystal Growth 129, 465-484.
Mullin, J.W. (2001). Crystallization, 4th. Edition. Oxford: Butterworth-Heinemann, United Kingdom.
Qiu, Y. and Rasmuson, A.C. (1994). Estimation of crystallization kinetics from bath cooling experiments. AIChE Journal 40, 799-812.
Quintana-Hernández, P.A., Bolaños, E., Saucedo, L. and Miranda, C.B. (2004). Mathematical Modeling and Kinetic Parameter Estimation in Batch Crystallization. AIChE Journal 50, 1407-1417.
Quintana-Hernández, P.A., Uribe-Martínez, B., Rico-Ramírez, V. and Bolaños-Reinoso, E. (2008). Comparative analysis of power low type and diffusion-integration kinetic equations in batch cooling of sugar cane. Revista Mexicana de Ingeniería Química 7(2), 171-182.
Quintana-Hernández, P.A., Maldonado-Caraza, D., Cornejo-Serrano, M.C. and Villalobos-Oliver, E.E. (2020). Development of a process for sugar fortification with vitamin A. Revista Mexicana de Ingeniería Química 19(3), 1163-1174.
Sanchez-Sanchez, K.B., Bolaños-Reynoso, E. and Urrea-García, G.R. (2017). Analysis of operation conditions for sugar cane batch crystallization based on MSZW mechanistic kinetic models. Revista Mexicana de Ingeniería Química 16(3), 1029-1052.
Sanchez-Sanchez, K.B., Bolaños-Reynoso, E., Mendez-Contreras, J.M. and Cerecero- Enriquez, R. (2020). Effects of agitation rates over metastable zone width (MSZW) of concentration for cane sugar crystallization. Revista Mexicana de Ingeniería Química 19, 507-520.
Sarig, S. and Mullin, J.W. (1982). Effect of trace impurities on calcium sulphate precipitation. Journal of chemical technology and biotechnology 32, 525-531.
Sgualdino, G., Vaccari, G., Mantovani, G. and Aquilano, D. (1996). Implications of crystal growth theories for mass crystallization: Application to crystallization of sucrose. Progress in crystal growth and characterization of materials 32(4), 225-245.
Smythe, B.M. (1967). Sucrose crystal growth. Australian Journal of Chemistry 20, 1087-1097.
Söhnel, O. and Garside, J. (1992). Precipitation, Oxford: Butterworth-Heinemann, United Kingdom.
Ugarte, M., Santana, R., Delgado, I. and Fernández, Y. (1999). Estudio del efecto de impurezas sobre la solubilidad de la sacarosa. Cuba-Azucar, XXVIII(2).
Vavrinecz, G. (1965). Atlas of sugar crystals. Berlin: Bartens, Germany.
Wey, J.S. (1985). Analysis of Bath Crystallization Processes. Chemical Engineering Communications 35, 231 – 252.
Zhang, X.Z., Qian, G. and Zhou, X. (2012). Effects of different organic acids on solubility and metastable zone width of zinc lactate. Journal of Chemical Engineering Data 57(11), 2963-2970.
Zhang, X.Z., Qian, G. and Zhou, X. (2017). Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid. Journal of Crystal Growth 463, 162-167.
How to Cite
Quintana-Hernández, P., Medina-Galván, X., Maldonado-Caraza, D., & Reyes-Valadez, J. (2020). Influence of retinyl palmitate on nucleation and growth kinetics in batch sugarcane crystallization. Revista Mexicana De Ingeniería Química, 20(1), 185-194.
Catalysis, kinetics and reactors