INSULATOR-BASED DIELECTROPHORESIS

  • S. Ozuna-Chacón Departamento de Ingeniería Química y Centro de Biotecnología. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
  • B.H. Lapizco-Encinas Departamento de Ingeniería Química y Centro de Biotecnología. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
  • M. Rito-Palomares Departamento de Biotecnología e Ingeniería de Alimentos y Centro de Biotecnología. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
  • E. Collado-Arredondo Departamento de Ingeniería Eléctrica. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
  • S.O. Martínez-Chapa Departamento de Ingeniería Eléctrica. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
Keywords: dielectrophoresis, electrophoresis, electrokinetics, electroosmotic flow, microfluidics

Abstract

Recently there has been an increasing interest in the development of laboratories machined on microdevices (labon-a-chip). These portable microsystems would be able to accomplish the same tasks as conventional laboratory equipment, with the advantage of being faster and requiring a smaller sample volume. Thus, separation techniques on a microscale are acquiring a greater importance. Among these techniques, we can find the separation of particles by a dielectrophoretic force. Dielectrophoresis is an electrokinetic transport mechanism that occurs in the presence of a non-homogeneous electric field. Dielectrophoresis is a non-destructive technique with great potential for the separation and concentration of bioparticles. Insulator-based dielectrophoresis makes it possible to trap and concentrate particles inside a microchannel by applying an electric field. The magnitude of the dielectrophoretic force depends on the operating conditions: insulating structures geometry, electric field intensity, particle concentration, conductivity and pH of the suspending buffer. This work presents a parametric study on insulator-based dielectrophoresis with the objected of characterizing the performance of a dielectrophoretic microdevice, and obtaining the optimal conditions for the concentration and separation of a mixture of particles.

References

Andersson, H. y van den Berg, A. (2003). Microfluidic devices for cellomics: a review. Sensors and Actuators B: Chemical 92, 315- 325.

Andersson, H. y van den Berg, A. (2004). Microtechnologies and nanotechnologies for single-cell analysis. Current Opinion in Biotechnology 15, 44-49.

Betts, W.B. (1995). The potential of dielectrophoresis for the real-time detection of microorganisms in foods. Trends in Food Science and Technology 6, 51-58.

Chou, C., Tegenfeldt, J., Bakajin, O., Chan, S., Cox, E., Darnton, N., Duke, T. y Austin, R. (2002). Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophysical Journal 83, 2170-2179.

Chou, C. y Zenhausern, F. (2003). Electrodeless dielectrophoresis for micro total analysis systems. IEEE Engineering in Medicine and Biology Magazine 22, 62-67.

Crane, J. y Pohl, H. (1968). A study of living and dead yeast cells using dielectrophoresis. Journal of the Electrochemical Society 115, 584-586.

Cummings, E. y Singh, A. (2000). Dielectrophoretic trapping without embedded electrodes, SPIE: Conference on Microfluidic Devices and Systems III 4177, 164-173.

Cummings, E. y Singh, A. (2003). Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Analytical Chemistry 75, 4724-4731.

Gascoyne, P., Wang, X., Huang, Y. y Becker, F. (1997). Dielectrophoretic separation of cancer cells from blood. IEEE Transactions on Industry Applications 33, 670-678.

Gascoyne, P.R.C. y Vykoukal, J. (2002). Particle separation by dielectrophoresis. Electrophoresis 23, 1973-1983.

Holzel, R. y Bier, F.F. (2003). Dielectrophoretic Manipulation of DNA. IEEE ProceedingsNanobiotechnology 150, 47-53.

Jones, T.B. (1995). Electromechanics of Particles, Pp. 265. Cambridge University Press, USA.

Lapizco-Encinas, B.H., Davalos, R., Simmons, B.A., Cummings, E.B. y Fintschenko, Y. (2005). An Insulator-Based (Electrodeless) Dielectrophoretic Concentrator for Microbes in Water. Journal of Microbiological Methods 62, 317-326.

Lapizco-Encinas, B.H., Simmons, B.A., Cummings, E.B. y Fintschenko, Y. (2004a). Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry 76, 1571-1579.

Lapizco-Encinas, B.H., Simmons, B.A., Cummings, E.B. y Fintschenko, Y. (2004b). InsulatorBased Dielectrophoresis for the Selective Concentration and Separation of Live Bacteria in Water. Electrophoresis 25, 1695-1704.

Li, H. y Bashir, R. (2002). Dielectrophoretic separation and manipulation of live and heattreated cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuators B-Chemical 86, 215-221.

Markx, G.H., Huang, Y., Zhou, X.F. y Pethig, R. (1994). Dielectrophoretic characterization and separation of microorganisms. MicrobiologyUK 140, 585-591.

Pohl, H. (1951). The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Applied Physics 22, 869-871.

Pohl, H. (1958). Some Effects of Nonuniform Fields on Dielectrics. Applied Physics 29, 1182- 1188.

Rousselet, J., Markx, G. y Pethig, R. (1998). Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids and Surfaces A-Physicochemical and Engineering Aspects 140, 209-216.

Suehiro, J., Zhou, G., Imamura, M. y Hara, M. (2003). Dielectrophoretic filter for separation and recovery of biological cells in water, IEEE Annual Meeting of the IndustryApplications-Society 39, 1514-1521.

Washizu, M. (2003). Bio-nanotechnology of DNA based on electrostatic manipulation, Institute of Physics Conference Series No. 178, 89-94.

Washizu, M., Kurosawa, O., Arai, I., Suzuki, S. y Shimamoto, N. (1995). Applications of electrostatic stretch-and-positioning of DNA. IEEE Transactions on Industry Applications 31, 447-456.

Yamamoto, T., Kurosawa, O., Kabata, H., Shimamoto, N. y Washizu, M. (2000). Molecular surgery of DNA based on electrostatic micromanipulation. IEEE Transactions on Industry Applications 36, 1010-1017.

Zheng, L., Brody, J. y Burke, P. (2004). Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors and Bioelectronics 20, 606-619.

Zheng, L., Li, S., Burke, P. y Brody, J. (2003). Towards Single Molecule Manipulation with Dielectrophoresis Using Nanoelectrodes. 3rd IEEE Conference on Nanotechnology 1, 437- 440.

Zhou, G., Imamura, M., Suehiro, J. y Hara, M. (2002). A dielectrophoretic filter for separation and collection of fine particles suspended in liquid, 37th Annual Meeting of the IEEE-Industry-Applications-Society 2, 1404-1411.
Published
2020-08-18
How to Cite
Ozuna-Chacón, S., Lapizco-Encinas, B., Rito-Palomares, M., Collado-Arredondo, E., & Martínez-Chapa, S. (2020). INSULATOR-BASED DIELECTROPHORESIS. Revista Mexicana De Ingeniería Química, 6(3), 329-335. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1965
Section
Process engineering