CATALYTIC WET AIR OXIDATION OF METHYL TERT-BUTYL ETHER (MTBE) ON Rh/γ-Al2O3: EFFECT OF Sn AND Ce ADDITION

  • I. Cuauhtémoc-López
  • G. Del Angel-Montes
  • G. Torres-Torres
  • V. Bertin Mardel
Keywords: methyl-tert-butyl ether oxidation, Rh/γ-Al2O3, RhSn/γ-Al2O3-Ce

Abstract

The activity and selectivity of Rh/γ-Al2O3 catalysts modified by the addition of Sn and Ce was evaluated for the oxidation of MTBE in the liquid phase. The reaction was carried out in a Parr reactor at 120 ºC and 10 bars of O2 pressure. RhSn/γ-Al2O3 catalyst was more active than Rh/γ-Al2O3 catalyst. The increment in the content of Ce, favors the selectivity toward CO2, this is explained by the formation Ce4+-O2-M+ species, which improve the capacity of oxidation of the catalyst. The catalyst RhSn/γ-Al2O3-Ce5 showed the best selectivity toward CO2.

References

Achten, C., Kolb A. y Uttmann, W. P. (2001). Methyl tert-butyl ether (MTBE) in urban and rural precipitation in Germany. Atmospheric Environment 35, 6337–6345.

Anderson, M. (2000). Removal of MTBE and Other Organic Contaminants from Water by Sorption to High Silica Zeolites. Environmtal Science and Technology 34(4), 725-727

Brown, J. S., Bay, S. M, Greenstein, D. J. y Ray, W. (2001). Concentrations of Methyl-Tert-Butyl Ether (MTBE) in Inputs and Receiving Waters of Southern California. Marine Pollution Bulletin 42(10), 957-966

Delanoe, F. (1996). Tesis de Doctorado, Université de Poitiers, Francia, p. 5.

Del Angel, G., Bonilla, A., Navarrete, J., Figueroa, E. G. y Fierro, J. L. G. (2001). The Inhibiting Effect of Lanthanum on the Formation of Benzene over PtSn/Al2O3 Reforming Catalysts. Journal of Catalysis 203, 257-263.

Del Angel, G., Coq, B., Dutartre, R. y Figueras, F. (1984). The influence of particle size and support on the catalytic properties of rhodium for hydrogenolysis of hexanes and methylcyclopentane. Journal of Catalysis 87, 27-35.

Kondarides, D.I. y Verykios, X.E. (1998). Effect of Chlorine on the Chemisorptive Properties of Rh/CeO2Catalysts Studied by XPS and Temperature Programmed Desorption Techniques. Journal of Catalysis 174, 52-64

Gillner, M. y Nihlen, A. S. (1988). Methyl tertiary-Butyl Ether, Environmental Health Criteria. World Health Organization, Geneva 190-199.

Hosokawa, S., Kanai, H., Utani, K., Taniguchi, Yo-I., Saito, Y. y Imamura, S. (2003). State of Ru on CeO2 and its catalytic activity in the wet oxidation of acetic acid. Applied Catalysis B: Environmental 45, 181-187.

Kasprzyk-Hordern, B., Andrzejewski, P, Dabrowska, A., Czaczyk, K. y Nawrocki, J. (2004). MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process. Applied Catalysis B: Environmental 51, 51-66.

Lin, S., Chang, D.J., Wang, Ch.H. y Chen, Ch. (2003). Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions. Water Research 37, 793-800.

Mishra, V.S., Mahajani, V.V. y Joshi, J.B. (1995). Wet Air Oxidation. Industrial and Engineering Chemistry Research 34, 2-48

Neppolian, B., Junga, H., Choi, H., Lee, J. y Kang, J-W. (2002). Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion. Water Research 36, 4699-4708.

Safarzadeh-Amiri, A. (2001). O3/H2O2, Treatment of Methyl-Tert-Butyl Ether (Mtbe) in Contaminated Waters. Water Research 35 (15), 3706–3714.

Zhang, Z.L., Tsipouriari, V.A. y Efstathiou, A.M. (1996). Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: I. Effects of Support and Metal Crystallite Size on Reaction Activity and Deactivation Characteristics. Journal of Catalysis 158, 51-63.
Published
2020-08-19
How to Cite
Cuauhtémoc-López, I., Del Angel-Montes, G., Torres-Torres, G., & Bertin Mardel, V. (2020). CATALYTIC WET AIR OXIDATION OF METHYL TERT-BUTYL ETHER (MTBE) ON Rh/γ-Al2O3: EFFECT OF Sn AND Ce ADDITION. Revista Mexicana De Ingeniería Química, 5(3), 211-217. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1969

Most read articles by the same author(s)