The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites

  • J.A. González-Calderón Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí
  • M. Peña-Juárez Doctorado Institucional en Ingeniería y Ciencia de Materiales. Universidad Autónoma de San Luis Potosí
  • R. Zarraga Departamento de Química, Universidad de Guanajuato
  • D. Contreras-López Departamento de Ingeniería Química, Universidad de Guanajuato
  • J. Vallejo-Montesinos Departamento de Química, Universidad de Guanajuato
Keywords: isotactic polypropylene, alkoxysilanes, non-isothermal crystallization, fillers, titanium dioxide


Functionalization of fillers provides advantages in non-isothermal crystallization of isotactic polypropylene (iPP); therefore, kinetic properties iPP composites filled with alkoxysilane-functionalized titanium dioxide (TiO2) were investigated to understand the role of functional groups. The surface modification of TiO2 nanoparticle was carried out with three different alkoxysilanes: 3-aminopropyltrimethoxysilane (APTMS), 3-chloropropyltrimethoxysilane (CPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS); after, composites were prepared 0.5% by weight in iPP. The results of the X-Ray Diffraction and Nuclear magnetic resonance analyses showed the characteristic signals of each chemical species that confirm the success of surface modification of the oxide with alkoxysilanes. The study by Differential scanning calorimetry at different cooling rates allowed to observe that the non-isothermal crystallization of iPP composites is described by Jeziorny’s and Mo’s equations; and that the addition of fillers of TiO2 modified with the alkoxysilanes changed the crystallization process thanks to the functional groups and their interface interactions with the polymer matrix; for example, the presence of CPTMS and GPTMS caused recrystallization of iPP and therefore, increased the crystallization process rate. Finally, the activation energy of the composites varied depending on the alkoxysilane used, since less energy was needed for some cases; derived from better dispersion and that the particles acted as nucleation centers.


Alariqi, S. A. S., Kumar, A. P., Rao, B. S. M., & Singh, R. P. (2009). Effect of ??-dose rate on crystallinity and morphological changes of ??-sterilized biomedical polypropylene. Polymer Degradation and Stability, 94(2), 272–277.
Allen, J. J., Rosenberg, E., Johnston, E., & Hart, C. (2012). Sol-Gel synthesis and characterization of silica polyamine composites: applications to metal ion capture. ACS Applied Materials and Interfaces, 4(3), 1573–1584.
Alyamac, E., Gu, H., Soucek, M. D., Qiu, S., & Buchheit, R. G. (2012). Alkoxysilane oligomer modified epoxide primers. Progress in Organic Coatings, 74(1), 67–81.
Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environmentA review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176.
Blaine, R. L., & Kissinger, H. E. (2012a). Homer Kissinger and the Kissinger equation. Thermochimica Acta, 540, 1–6.
Blaine, R. L., & Kissinger, H. E. (2012b). Homer Kissinger and the Kissinger equation. Thermochimica Acta, 540, 1–6.
Borovanska, I., Dobreva, T., Benavente, R., Djoumaliisky, S., & Kotzev, G. (2012). Quality assessment of recycled and modified LDPE/PP blends. Journal of Elastomers and Plastics, 44(6), 479–497.
Cao, J., Zuo, Y., Wang, D., Zhang, J., & Feng, S. (2017). Functional polysiloxanes: a novel synthesis method and hydrophilic applications. New Journal of Chemistry, 41(16), 8546–8553.
Chiellini, E., Corti, A., D’Antone, S., & Baciu, R. (2006). Oxo-biodegradable carbon backbone polymers - Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability, 91(11), 2739–2747.
Chin, S., & Ai Tjong, S. (1997). Non-isothermal Crystallization Kinetics of Calcium Carbonate-filled b-Crystalline Phase Polypropylene Composites. Polymer International 95È103 Polym. Int, 44(44), 95–103.<95::AID-PI821>3.0.CO;2-L
Cho, S., Kim, N., Lee, S., Lee, H., Lee, S. H., Kim, J., & Choi, J. W. (2016). Use of hybrid composite particles prepared using alkoxysilane-functionalized amphiphilic polymer precursors for simultaneous removal of various pollutants from water. Chemosphere, 156, 302–311.
Chûjô, R., Kogure, Y., & Väänänen, T. (1994). Two-site model analysis of 13C n.m.r, of polypropylene polymerized by Ziegler-Natta catalyst with external alkoxysilane donors. Polymer, 35(2), 339–342.
Connell, L. S., Gabrielli, L., Mahony, O., Russo, L., Cipolla, L., & Jones, J. R. (2017). Functionalizing natural polymers with alkoxysilane coupling agents: Reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin. Polymer Chemistry, 8(6), 1095–1103.
Dai, X., Zhang, Z., Chen, C., Li, M., Tan, Y., & Mai, K. (2015). Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(2), 829–838.
Dai, X., Zhang, Z., Wang, C., Ding, Q., Jiang, J., & Mai, K. (2013). A novel montmorillonite with ??-nucleating surface for enhancing ??-crystallization of isotactic polypropylene. Composites Part A: Applied Science and Manufacturing, 49, 1–8.
Delgado Alvarado, E., Peña Juárez, M. G., Perez Perez, C., Perez, E., & Gonzalez, J. A. (2019). Improvement in the dispersion of TiO2 particles inside Chitosan-Methyl cellulose films by the use of silane coupling agent. Journal of the Mexican Chemical Society, 63(2).
Demir, H., Balköse, D., & Ülkü, S. (2006). Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polymer Degradation and Stability, 91(5), 1079–1085.
Ding, Q., Zhang, Z., Wang, C., Jiang, J., Li, G., & Mai, K. (2012). Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochimica Acta, 536, 47–54.
Dintcheva, N. T., Arrigo, R., Morici, E., Gambarotti, C., Carroccio, S., Cicogna, F., & Filippone, G. (2015). Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Composites Part B: Engineering, 82, 196–204.
Fuad, M. Y. A., Ismail, Z., Ishak, Z. A. M., & Omar, A. K. M. (1995). Application of rice husk ash as fillers in polypropylene: Effect of titanate, zirconate and silane coupling agents. European Polymer Journal, 31(9), 885–893.
Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Almendarez-Camarillo, A., Montiel, R., & Pérez, E. (2016). Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochimica Acta, 631, 8–17.
Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Mata-Padilla, J. M., Pérez, E., & Almendarez-Camarillo, A. (2015). Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science, 50(24), 7998–8006.
Gonzalez-Calderon, J A, Vallejo-Montesinos, J., Almendarez-Camarillo, A., Montiel, R., & Pérez, E. (2016). Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochimica Acta, 631, 8–17.
Gonzalez-Calderon, J A, Vallejo-Montesinos, J., Martínez-Martínez, H. N., Cerecero-Enríquez, R., & López-Zamora, L. (2019). EFFECT OF CHEMICAL MODIFICATION OF TITANIUM DIOXIDE PARTICLES VIA SILANIZATION UNDER PROPERTIES OF CHITOSAN/POTATO-STARCH FILMS. Revista Mexicana de Ingeniería Química, 18(3), 913–927. Retrieved from
Gonzalez-Calderon, José Amir, Pérez-Pérez, C., Pérez Rodríguez, R. Y., Fierro-González, J. C., & Vallejo-Montesinos, J. (2019). Silanization of di-n-octyldichlorosilane as a route to improve the integration of titanium dioxide in polypropylene. Journal of Thermal Analysis and Calorimetry.
Gonzalez-Rodriguez, V., Escobar-Barrios, V., Peña-Juárez, M. G., & Pérez, E. (2020). Thermochimica Acta Effect of aliphatic chain in dicarboxylic acids on non-isothermal crystallization and mechanical behavior of titanium dioxide / iPP composites. Thermochimica Acta, 686(August 2019), 178543.
González, A., Pérez, E., Almendarez, A., Villegas, A., & Vallejo-Montesinos, J. (2016). Calcium pimelate supported on TiO2nanoparticles as isotactic polypropylene prodegradant. Polymer Bulletin, 73(1).
Habila, B., Ukoha, P. O., Okoduwa, S. I. R., Salim, A., Babangida, M. B., & Simon, A. (2020). Synthesis and characterization of an immobilized thiosalicylic-mercaptoethanol biligand system and its application in the detoxification of chromium(iii) and iron(iii) ions from tannery wastewater. New Journal of Chemistry, 44(6), 2321–2327.
He, Z. L., Chen, L. N., Zhang, L., Ren, H. Y., Xu, M. Di, & Lou, Y. W. (2020). Effect of filler functional groups on the mechanical properties and relevant mechanisms of polydicyclopentadiene nanocomposites. Journal of Applied Polymer Science, (December 2019), 1–11.
Huang, L., Wang, H., Wang, W., Wang, Q., & Song, Y. (2016). Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 27(4), 949–958.
Huang, M. ‐R, Li, X. ‐G, & Fang, B. ‐R. (1995). Β‐Nucleators and Β‐Crystalline Form of Isotactic Polypropylene. Journal of Applied Polymer Science, 56(10), 1323–1337.
Huber, M. P., Kelch, S., & Berke, H. (2016). FTIR investigations on hydrolysis and condensation reactions of alkoxysilane terminated polymers for use in adhesives and sealants. International Journal of Adhesion and Adhesives, 64, 153–162.
Huo, H., Jiang, S., An, L., & Feng, J. (2004). Influence of Shear on Crystallization Behavior of the β Phase in Isotactic Polypropylene with β-Nucleating Agent. Macromolecules, 37(7), 2478–2483.
Ijadpanah-saravi, H., Safari, M., & Khodadadi-darban, A. (2014). Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. (November 2015).
Ismail, H., Mega, L., & Abdul Khalil, H. P. S. (2001). Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polymer International, 50(5), 606–611.
Issa, A. A., & Luyt, A. S. (2019). Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers, 11(3).
Jagur-Grodzinski, J. (2006). Nanostructured polyolefins / clay composites : role of the molecular interaction at the interface. Polym. Adv. Technol., 17(April), 395–418.
Ju, S.-P., Chen, C.-C., Huang, T.-J., Liao, C.-H., Chen, H.-L., Chuang, Y.-C., … Chen, H.-T. (2016). Investigation of the structural and mechanical properties of polypropylene-based carbon fiber nanocomposites by experimental measurement and molecular dynamics simulation. Computational Materials Science, 115, 1–10.
Karger-Kocsis, J. (1995). Polypropylene Structure, blends and Composites : Volume 3 Composites. Springer Netherlands.
Kaya, D., McNally, T., Douglas, P., Coburn, N., & Gupta, J. (2018). Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene) and MWCNTs. Advanced Industrial and Engineering Polymer Research, 1(1), 99–110.
Kesmez, Ö. (2020). Hydrophobic, organic–inorganic hybrid sol–gel coatings containing boehmite nanoparticles for metal corrosion protection. Chemical Papers, 74(2), 673–688.
Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217.
Koch, K. M. (1983). Silane coupling agents. In Journal of Organometallic Chemistry (Vol. 246, pp. c27–c28).
Lee, C.-W., Joo, S.-W., & Gong, M.-S. (2005). Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker. Sensors and Actuators B: Chemical, 105(2), 150–158.
Li, J. X., & Cheung, W. L. (1997). Pimelic Acid-Based Nucleating Agents for Hexagonal CrystaIIine Polypropylene. Journal of Vinyl and Additive Technology, 3(2), 151–156.
Li, J. X., & Cheung, W. L. (1999). Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer, 40(8), 2085–2088.
Li, M., Li, G., Zhang, Z., Dai, X., & Mai, K. (2014). Enhanced β-crystallization in polypropylene random copolymer with a supported β-nucleating agent. Thermochimica Acta, 598, 36–44.
López-Zamora, L., Martínez-Martínez, H. N., & González-Calderón, J. A. (2018). Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Materials Chemistry and Physics, 217(June), 285–290.
Lotz, B. (1998). α and β phases of isotactic polypropylene: A case of growth kinetics “phase reentrency” in polymer crystallization. Polymer, 39(19), 4561–4567.
Lv, Y., Huang, Y., Kong, M., & Li, G. (2013). Improved thermal oxidation stability of polypropylene films in the presence of β-nucleating agent. Polymer Testing, 32(2), 179–186.
Mani, M. R., Chellaswamy, R., Marathe, Y. N., & Pillai, V. K. (2016). New Understanding on Regulating the Crystallization and Morphology of the β-Polymorph of Isotactic Polypropylene Based on Carboxylate-Alumoxane Nucleating Agents. Macromolecules, 49(6), 2197–2205.
Maryudi., Hisyam, A., Yunus, R., & Bag, M. (2013). Thermo-oxidative Degradation of High Density Polyethylene Containing Manganese Laurate. International Journal of Engineering Research and Applications (IJERA), 3(2), 1156–1165.
Meer, S., Kausar, A., & Iqbal, T. (2016). Attributes of Polymer and Silica Nanoparticle Composites: A Review. Polymer-Plastics Technology and Engineering, 55(8), 826–861.
Mendes, A. A., Cunha, A. M., & Bernardo, C. A. (2011). Study of the degradation mechanisms of polyethylene during reprocessing. Polymer Degradation and Stability, 96(6), 1125–1133.
Mendoza, G., Peña-Juárez, M. G., Perez, E., & Gonzalez-Calderon, J. A. (2020). Used of Chemically Modified Titanium Dioxide Particles to Mediate the Non-isothermal Cold Crystallization of Poly(latic acid). Journal of the Mexican Chemical Society, 64(2), 44–63.
Muratov, D. S., Kuznetsov, D. V., Il’inykh, I. A., Burmistrov, I. N., & Mazov, I. N. (2015). Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Composites Science and Technology, 111, 40–43.
Nocuń, M., Siwulski, S., Leja, E., & Jedliński, J. (2005). Structural studies of TEOS-tetraethoxytitanate based hybrids. Optical Materials, 27(9), 1523–1528.
Pantoja, M., Encinas, N., Abenojar, J., & Martínez, M. A. (2013). Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion. Applied Surface Science, 280, 850–857.
Papageorgiou, G. Z., & Panayiotou, C. (2011). Crystallization and melting of biodegradable poly(propylene suberate). Thermochimica Acta, 523(1–2), 187–190.
Reingruber, E., & Buchberger, W. (2010). Analysis of polyolefin stabilizers and their degradation products. Journal of Separation Science, 33(22), 3463–3475.
Schneider, M. H., & Brebner, K. I. (1985). Wood-polymer combinations: The chemical modification of wood by alkoxysilane coupling agents. Wood Science and Technology, 19(1), 67–73.
Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., … Fernandes, M. H. (2009). Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomaterialia, 5(1), 346–355.
Sterman, S., & Marsden, J. G. (1966). Silane coupling agents. Industrial and Engineering Chemistry, 58(3), 33–37.
Supaphol, P., Thanomkiat, P., Junkasem, J., & Dangtungee, R. (2007). Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polymer Testing, 26(1), 20–37.
Tang, J., Wang, Y., Liu, H., & Belfiore, L. A. (2004). Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer, 45(7), 2081–2091.
Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase Characterization of TiO 2 Powder by XRD and TEM. Kasetsart J. (Nat. Sci.), 42, 357–361.
Thomas, S. P., Thomas, S., & Bandyopadhyay, S. (2009). Mechanical, atomic force microscopy and focussed ion beam studies of isotactic polystyrene/titanium dioxide composites. Composites Part A: Applied Science and Manufacturing, 40(1), 36–44.
Tonda-Turo, C., Gentile, P., Saracino, S., Chiono, V., Nandagiri, V. K., Muzio, G., … Ciardelli, G. (2011). Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. International Journal of Biological Macromolecules, 49(4), 700–706.
Tong, T., Zhang, J., Tian, B., Chen, F., & He, D. (2008). Preparation and characterization of anatase TiO2microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Materials Letters, 62(17–18), 2970–2972.
Uhlig, F., & Dortmund, D. (2000). Si NMR Some Practical Aspects. Inorganic Chemistry, 2(46), 208–222.
Vallejo-Montesinos, J., Muñoz, U. M., & Gonzalez-Calderon, J. A. (2016). Mechanical properties, crystallization and degradation of polypropylene due to nucleating agents, fillers and additives. In Polypropylene: Properties, Uses and Benefits.
Vallejo-Montesinos, Javier, Cesar López Martínez, J., Montejano-Carrizales, J. M., Pérez, E., Balcázar Pérez, J., Almendárez-Camarillo, A., … Alta, N. (n.d.). Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating.
Vallejo-Montesinos, Javier, Gámez-Cordero, J., Zarraga, R., Pérez Pérez, M. C., & Gonzalez-Calderon, J. A. (2019). Influence of the surface modification of titanium dioxide nanoparticles TiO 2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polymer Bulletin.
Vyazovkin, S. (2002). Is the Kissinger equation applicable to the processes that occur on cooling? Macromolecular Rapid Communications, 23(13), 771–775.<771::AID-MARC771>3.0.CO;2-G
Wang, C., Zhang, Z., Du, Y., Zhang, J., & Mai, K. (2011). Effect of poly (styrene-co-acrylonitrile) on β-nucleation of polypropylene filled with supported β-nucleating agent. Thermochimica Acta, 524(1–2), 157–164.
Wang, S., Ahmad, Z., & Mark, J. E. (1994). Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane. Chemistry of Materials, 6(7), 943–946.
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.
Zhang, X., Do, M. D., & Bilyk, A. (2007). Chemical modification of wheat-protein-based natural polymers: Formation of polymer networks with alkoxysilanes to modify molecular motions and enhance the material performance. Biomacromolecules, 8(6), 1881–1889.
Zhang, Z., Tao, Y., Yang, Z., & Mai, K. (2008). Preparation and characteristics of nano-CaCO3 supported ??-nucleating agent of polypropylene. European Polymer Journal, 44(7), 1955–1961.
Zhang, Z., Wang, C., Junping, Z., & Mai, K. (2012). β-Nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polymer International, 61(5), 818–824.
How to Cite
González-Calderón, J., Peña-Juárez, M., Zarraga, R., Contreras-López, D., & Vallejo-Montesinos, J. (2020). The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana De Ingeniería Química, 20(1), 435-452.