• L. J. Rodríguez-Castillo
  • A. Castillo-Mares Instituto Tecnológico de Ciudad Madero
  • R. García-Alamilla
  • R. Silva-Rodrigo
  • G. Sandoval-Robles Sandoval-Robles Instituto Tecnológico de Ciudad Madero
Keywords: treated kaolin, acid properties, ultrasonic energy, acid solutions, TPD-NH3, isopropanol dehydration


The present work deals with the study of the acid properties of comercial kaolin which was first calcined and later treated with HCl, HNO3 and H2SO4 2M solutions making use of ultrasonic energy as a mean of agitation. The techniques used to determine the acidity were NH3-TPD and 2-propanol dehydration. Through NH3-TPD was determined the acid distribution in relation to temperature variation. Results from this technique indicated the presence of acid sites from weak to very strong concentrating in the range of moderate to very strong acidity. The order of acidity shown by this technique was H2SO4>HCl >HNO3 indicating the same the tendency with the conversion-selectivity results in the dehydration of isopropanol where propylene and diisopropyl ether were obtained as products. The dehydration of 2-propanol allowed the evaluation of the catalytic activity of the materials and their acid character.


Aquino, J., Souza , C. y Araujo A. (2001). Synthesis and characterization of sulfate-supported MCM-41 material. International Journal of Inorganic Materials 3, 467-470

Castillo-Mares, A., Silva-Rodrigo, R. y García-Alamilla, R. (2000). Estudio sobre el efecto de agentes químico y ultrasonido en la activación del caolín. Memorias XXI Encuentro Nacional Academia Mexicana de Investigación y Docencia en Ingeniería Química 71-72

Colina, F.G., Espulgas, S. y Costa, J. (2001). High temperature reaction of kaolin with inorganic acids. British Ceramic Transactions.100, 203-206.

Domínguez, J.M; (1992) Las Arcillas: el Barro Noble. Fondo de Cultura Económica, 30-35.

Heidmann, I., Christl, I., Leu, Ch. y Kretzschmar, R. (2005). Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling. Journal of Colloid and Interface Science 282, 270-282

Jozefaciuk,G. y Bowanko, G. (2002). Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays and Clay Minerals 50(6),771-783

Kharisov, B. y Méndez, V. (1999).Uso del ultrasonido en procesos químicos. Ingenierías 2,13-21

Kruger, O., Shulze, Th. y Peters, D. (1999). Sonochemical treatment of natural ground water at different high frecuencies: preliminary results. Ultrasonic Sonochemistry 6,123-128

Linares, C.F., Alfonso L. y Rosa-Brussin, M. (2004). Modified Venezuelan kaolin as possible antacid drug. Journal of Applied Sciences 4, 472-476.

Mariaca-Domínguez, E. y Rivera-Segundo, E. (2000).Tecnología del ultrasonido (US) aplicada al mejoramiento del crudo maya. Memorias del XXI Encuentro Nacional de la Academia Mexicana de Investigación y Docencia en Ingeniería Química 205-206

Qadir, L., Osburn-Atkinson, E., Swider-Lyons, K., Cepak,V. y Rolison, D. (2003). Sonochemically induced decomposition of energetic materials in aqueous media. Chemosphere 50, 1107-1114

Yadav, G.D y Fair, J.J. (1999). Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials 33,1-48.
How to Cite
Rodríguez-Castillo, L. J., Castillo-Mares, A., García-Alamilla, R., Silva-Rodrigo, R., & Sandoval-Robles, G. S.-R. (2020). PRELIMINARY STUDY OF THE ACID PROPERTIES OF A KAOLIN TREATED WITH ULTRASONIC ENERGY AND INORGANIC ACID SOLUTIONS. Revista Mexicana De Ingeniería Química, 5(3), 329-334. Retrieved from

Most read articles by the same author(s)