Comparative study of selective zinc leaching from EAFD using carboxylic agents

Keywords: EAFD, leaching, sodium-citrate, oxalic-acid, zinc.


Recycling of industrial waste has become a process of highly positive impact on the environment, industry and human health. The management of the electric arc furnace dust (EAFD) is a necessary and interesting task due to the possible recovery of its elevated metallic content (Zn, Pb, Cu, etc.). This reduces the environmental pollution generated by the leachability of its heavy metals and produces new revenues for the steel industries. In this work, a hydrometallurgical route was studied to extract the zinc present in EAFD.  The research carried out using two carboxylic acids: sodium citrate and oxalic acid at moderate concentrations (≤ 0.5 M). The effect of pH, molar concentration and stirring speed was analyzed. Under pressure and ambient temperature, after 3 h of leaching, the results showed that both agents can leach zinc from waste, reaching metal extractions of approximately 50%. The more stable franklinite (ZnFe2O4) and hematite (Fe2O3) phases were not decomposed under these mild conditions. Citrate was especially promising due to its selectivity for zinc.


Al-harahsheh M, Al-Nu’airat J, Al-Otoom A, Al-hammouri I, Al-jabali H, Al-zoubi M, Al’asal SA. (2018a). Treatments of Electric Arc Furnace Dust and Halogenated Plastic Wastes: A Review, Journal of Environmental Chemical Engineering.

Al-Harahsheh, M., Aljarrah, M., Al-Otoom, A., Altarawneh, M., & Kingman, S. (2018b). Pyrolysis kinetics of tetrabromobisphenol a (TBBPA) and electric arc furnace dust mixtures. Thermochimica Acta, 660, 61-69.

Al-Harahsheh, M., Aljarrah, M., Rummanah, F., Abdel-Latif, K., & Kingman, S. (2017). Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. Journal of Analytical and Applied Pyrolysis, 125, 50-60.

Al-Harahsheh, M., Al-Otoom, A., Al-Jarrah, M., Altarawneh, M., & Kingman, S. (2018c). Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures. Metallurgical and Materials Transactions B, 49(1), 45-60.

Al-Harahsheh, M., Al-Otoom, A., Al-Makhadmah, L., Hamilton, I. E., Kingman, S., Al-Asheh, S., & Hararah, M. (2015). Pyrolysis of poly(vinyl chloride) and—Electric arc furnacedust mixtures. Journal of Hazardous Materials, 299, 425-436.

Al-harahsheh, M., Kingman, S., Al-Makhadmah, L., & Hamilton, I. E. (2014). Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching. Journal of Hazardous Materials, 274, 87-97.

Asturiana de Zinc (2017). Principales aplicaciones del zinc. Disponible en: Consultado: 14 de agosto de 2020

Avery, H.E. (1974). Basic reaction kinetics and mechanisms, London, England: Macmillan Publishers Ltd.

Buzin, P. J. W. K. de, Heck, N. C., & Vilela, A. C. F. (2017). EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), pp. 194–202. doi: 10.1016/j.jmrt.2016.10.002

Carriazo, J. G., Noval, V. E., and Ochoa, C. (2017). Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Química, 46(1), pp. 42. doi: 10.15446/rev.colomb.quim.v46n1.62831

Chairaksa-Fujimoto, R., Maruyama, K., Miki, T., and Nagasaka, T. (2016). The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy, 159, pp. 120–125. doi: 10.1016/j.hydromet.2015.11.009

De La Torre, E., Guevara, A. and Espinoza, C. (2013). Valorización de polvos de acería, mediante recuperación de zinc por lixiviación y electrólisis. Revista Politécnica, Vol. 32(1) pp. 51–56.

Eriksson, G. (1979). An algorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal. Chim. Acta, vol. 112, pp, 375–383.

Gamboa, O. (2017). Optimización de los Parámetros de Operación del Proceso de Reciclado de Zinc. Tesis de maestría en Ciencias de Ingeniería Metalúrgica. Instituto Politécnico Nacional, Ciudad de México, México.

García-Arreola, M.E; Soriano-Pérez, S.H; Flores-Vélez, L.M; Cano-Rodríguez, I; Alonso-Dávila, P.A. (2015). Comparación de ensayos de lixiviación estáticos de elementos tóxicos en residuos mineros. Revista Mexicana de Ingeniería Química, 14 (1), 109-117.

Hagni, A.M., Hagni, R.D. and Demars, C. (1991). Mineralogical characteristics of electric arc furnace dusts. JOM, 43 (4), pp. 28–30. doi:10.1007/bf03220543

Havlik, T., Turzakova, M., Stopic, S., and Friedrich, B. (2005). Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy, 77(1-2), pp. 41–5. doi: 10.1016/j.hydromet.2004.10.008

Laforest, G., and Duchesne, J., (2006). Stabilization of electric arc furnace dust by the use of cementitious materials: Ionic competition and long-term leachability. Cement and Concrete Research, 36(9), pp. 1628–1634. doi: 10.1016/j.cemconres.2006.05.012

Langová, S., Leško, J., and Matýsek, D. (2009). Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95, pp. 179–182. doi: 10.1016/j.hydromet.2008.05.040

Madias, J. (2009). Reciclado de polvos de horno eléctrico. Acero Latinoamericano, 23 (513), 38.

Mazurek, K. (2013). Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy 134, pp. 26-31. doi: 10.1016/j.hydromet.2013.01.011

NIST, (2004). Critically Selected Stability Constants of Metal Compls. NIST Standard Reference Database 46, Version 8.0.

Oustadakis, P., Tsakiridis, P. E., Katsiapi, A., and Agatzini-Leonardou, S. (2010). Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Journal of Hazardous Materials, 179(1-3), pp. 1–7. doi: 10.1016/j.jhazmat.2010.01.059

Pinna, E.G.; Martinez, A.A; Tunez, F.M; Drajlin, D.S; Rodriguez, M.H. (2019). Acid leaching of LiCoO2 from LiBs: Thermodynamic study and reducing agent effect. Revista Mexicana de Ingeniería Química, 18 (2), 441-450. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Pinna

Puigdomenech, I. (2004). Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA). Inorganic Chemistry, Royal Institute of technology.

Steer, J. M., and Griffiths, A. J. (2013). Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy, 140, pp. 34–41. doi: 10.1016/j.hydromet.2013.08.011

Torres, R., and Lapidus, G. T. (2017). Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions. Waste Management, 60, pp. 561–568. doi: 10.1016/j.wasman.2016.12.001

Wentworth, WE. & Ladner, SJ. (1975). Fundamentos de química física. Barcelona, España: Reverté.

Wu, W., Wang, C., Bao, W., and Li, H. (2018). Selective reduction leaching of vanadium and iron by oxalic acid from spent V 2 O 5 -WO 3 /TiO 2 catalyst, Hydrometallurgy, 179, pp. 52–5. doi: 10.1016/j.hydromet.2018.05.021

Zhang, Y., Deng, J., Chen, J., Yu, R., and Xing, X. (2014). The electrowinning of zinc from sodium hydroxide solutions. Hydrometallurgy, 146, 59–63, doi: 10.1016/j.hydromet.2014.03.006

Zhang, Y., Yu, X., and Li, X. (2011). Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy, 109(3-4), pp. 211–214. doi:10.1016/j.hydromet.2011.07.002

Zhu, X., Xu, C., Tang, J., Hua, Y., Zhang, Q., Liu, H., Wang, X., and HUANG, M. (2019). Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Transactions of Nonferrous Metals Society of China, 29(10), pp. 2222–2228. doi:10.1016/s1003-6326(19)65128-9

How to Cite
Borda, J., & Torres, R. (2020). Comparative study of selective zinc leaching from EAFD using carboxylic agents. Revista Mexicana De Ingeniería Química, 20(1), 389-398.
Environmental Engineering