Comparative study of selective zinc leaching from EAFD using carboxylic agents
Abstract
Recycling of industrial waste has become a process of highly positive impact on the environment, industry and human health. The management of the electric arc furnace dust (EAFD) is a necessary and interesting task due to the possible recovery of its elevated metallic content (Zn, Pb, Cu, etc.). This reduces the environmental pollution generated by the leachability of its heavy metals and produces new revenues for the steel industries. In this work, a hydrometallurgical route was studied to extract the zinc present in EAFD. The research carried out using two carboxylic acids: sodium citrate and oxalic acid at moderate concentrations (≤ 0.5 M). The effect of pH, molar concentration and stirring speed was analyzed. Under pressure and ambient temperature, after 3 h of leaching, the results showed that both agents can leach zinc from waste, reaching metal extractions of approximately 50%. The more stable franklinite (ZnFe2O4) and hematite (Fe2O3) phases were not decomposed under these mild conditions. Citrate was especially promising due to its selectivity for zinc.
References
Al-harahsheh M, Al-Nu’airat J, Al-Otoom A, Al-hammouri I, Al-jabali H, Al-zoubi M, Al’asal SA. (2018a). Treatments of Electric Arc Furnace Dust and Halogenated Plastic Wastes: A Review, Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.102856
Al-Harahsheh, M., Aljarrah, M., Al-Otoom, A., Altarawneh, M., & Kingman, S. (2018b). Pyrolysis kinetics of tetrabromobisphenol a (TBBPA) and electric arc furnace dust mixtures. Thermochimica Acta, 660, 61-69. https://doi.org/10.1016/j.tca.2017.12.022
Al-Harahsheh, M., Aljarrah, M., Rummanah, F., Abdel-Latif, K., & Kingman, S. (2017). Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. Journal of Analytical and Applied Pyrolysis, 125, 50-60. https://doi.org/10.1016/j.jaap.2017.04.019
Al-Harahsheh, M., Al-Otoom, A., Al-Jarrah, M., Altarawneh, M., & Kingman, S. (2018c). Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures. Metallurgical and Materials Transactions B, 49(1), 45-60. https://doi.org/10.1007/s11663-017-1121-7
Al-Harahsheh, M., Al-Otoom, A., Al-Makhadmah, L., Hamilton, I. E., Kingman, S., Al-Asheh, S., & Hararah, M. (2015). Pyrolysis of poly(vinyl chloride) and—Electric arc furnacedust mixtures. Journal of Hazardous Materials, 299, 425-436. https://doi.org/10.1016/j.jhazmat.2015.06.041
Al-harahsheh, M., Kingman, S., Al-Makhadmah, L., & Hamilton, I. E. (2014). Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching. Journal of Hazardous Materials, 274, 87-97. https://doi.org/10.1016/j.jhazmat.2014.03.019
Asturiana de Zinc (2017). Principales aplicaciones del zinc. Disponible en: https://www.azsa.es/es/CalidadyProductos/todo-sobre-el-zinc/Paginas/Principales-Aplicaciones-del-Zinc.aspx. Consultado: 14 de agosto de 2020
Avery, H.E. (1974). Basic reaction kinetics and mechanisms, London, England: Macmillan Publishers Ltd.
Buzin, P. J. W. K. de, Heck, N. C., & Vilela, A. C. F. (2017). EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), pp. 194–202. doi: 10.1016/j.jmrt.2016.10.002
Carriazo, J. G., Noval, V. E., and Ochoa, C. (2017). Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Química, 46(1), pp. 42. doi: 10.15446/rev.colomb.quim.v46n1.62831
Chairaksa-Fujimoto, R., Maruyama, K., Miki, T., and Nagasaka, T. (2016). The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy, 159, pp. 120–125. doi: 10.1016/j.hydromet.2015.11.009
De La Torre, E., Guevara, A. and Espinoza, C. (2013). Valorización de polvos de acería, mediante recuperación de zinc por lixiviación y electrólisis. Revista Politécnica, Vol. 32(1) pp. 51–56.
Eriksson, G. (1979). An algorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal. Chim. Acta, vol. 112, pp, 375–383.
Gamboa, O. (2017). Optimización de los Parámetros de Operación del Proceso de Reciclado de Zinc. Tesis de maestría en Ciencias de Ingeniería Metalúrgica. Instituto Politécnico Nacional, Ciudad de México, México.
García-Arreola, M.E; Soriano-Pérez, S.H; Flores-Vélez, L.M; Cano-Rodríguez, I; Alonso-Dávila, P.A. (2015). Comparación de ensayos de lixiviación estáticos de elementos tóxicos en residuos mineros. Revista Mexicana de Ingeniería Química, 14 (1), 109-117.
Hagni, A.M., Hagni, R.D. and Demars, C. (1991). Mineralogical characteristics of electric arc furnace dusts. JOM, 43 (4), pp. 28–30. doi:10.1007/bf03220543
Havlik, T., Turzakova, M., Stopic, S., and Friedrich, B. (2005). Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy, 77(1-2), pp. 41–5. doi: 10.1016/j.hydromet.2004.10.008
Laforest, G., and Duchesne, J., (2006). Stabilization of electric arc furnace dust by the use of cementitious materials: Ionic competition and long-term leachability. Cement and Concrete Research, 36(9), pp. 1628–1634. doi: 10.1016/j.cemconres.2006.05.012
Langová, S., Leško, J., and Matýsek, D. (2009). Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95, pp. 179–182. doi: 10.1016/j.hydromet.2008.05.040
Madias, J. (2009). Reciclado de polvos de horno eléctrico. Acero Latinoamericano, 23 (513), 38.
Mazurek, K. (2013). Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy 134, pp. 26-31. doi: 10.1016/j.hydromet.2013.01.011
NIST, (2004). Critically Selected Stability Constants of Metal Compls. NIST Standard Reference Database 46, Version 8.0.
Oustadakis, P., Tsakiridis, P. E., Katsiapi, A., and Agatzini-Leonardou, S. (2010). Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Journal of Hazardous Materials, 179(1-3), pp. 1–7. doi: 10.1016/j.jhazmat.2010.01.059
Pinna, E.G.; Martinez, A.A; Tunez, F.M; Drajlin, D.S; Rodriguez, M.H. (2019). Acid leaching of LiCoO2 from LiBs: Thermodynamic study and reducing agent effect. Revista Mexicana de Ingeniería Química, 18 (2), 441-450. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Pinna
Puigdomenech, I. (2004). Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA). Inorganic Chemistry, Royal Institute of technology. https://sites.google.com/site/chemdiagr/
Steer, J. M., and Griffiths, A. J. (2013). Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy, 140, pp. 34–41. doi: 10.1016/j.hydromet.2013.08.011
Torres, R., and Lapidus, G. T. (2017). Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions. Waste Management, 60, pp. 561–568. doi: 10.1016/j.wasman.2016.12.001
Wentworth, WE. & Ladner, SJ. (1975). Fundamentos de química física. Barcelona, España: Reverté.
Wu, W., Wang, C., Bao, W., and Li, H. (2018). Selective reduction leaching of vanadium and iron by oxalic acid from spent V 2 O 5 -WO 3 /TiO 2 catalyst, Hydrometallurgy, 179, pp. 52–5. doi: 10.1016/j.hydromet.2018.05.021
Zhang, Y., Deng, J., Chen, J., Yu, R., and Xing, X. (2014). The electrowinning of zinc from sodium hydroxide solutions. Hydrometallurgy, 146, 59–63, doi: 10.1016/j.hydromet.2014.03.006
Zhang, Y., Yu, X., and Li, X. (2011). Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy, 109(3-4), pp. 211–214. doi:10.1016/j.hydromet.2011.07.002
Zhu, X., Xu, C., Tang, J., Hua, Y., Zhang, Q., Liu, H., Wang, X., and HUANG, M. (2019). Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Transactions of Nonferrous Metals Society of China, 29(10), pp. 2222–2228. doi:10.1016/s1003-6326(19)65128-9

Copyright (c) 2020 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.