NUMERICAL STUDY FOR THERMAL STERILIZATION IN CANNED LIQUID FOOD CONTAINING PARTICLES USING POROUS MEDIA APPROACH

  • H. Jiménez-Islas
  • L. M. González-Calderón
  • J. E. Botello-Alvarez
  • J. L. Navarrete-Bolaños Instituto Tecnológico de Celaya
Keywords: porous medium, food sterilization, cold point, orthogonal collocation

Abstract

A numerical study was performed about heating dynamic on canned foods that contain solid particles, analyzing the effect of the Darcy number, geometric aspect and thermodynamical properties on the loci of cold spots and the sterilization time required. The mathematical model was developed from the Darcy law using Brinkman extension and an energy balance for the multiphase media. The governing equations were spatially discretized using orthogonal collocation with Legendre polynomials, with mesh 21x21 and 43x43; the time was discretized using and implicit Euler scheme. The resulting set of algebraic equations was solved via nonlinear relaxation. With this information, a computer code was developed using FORTRAN 90, that allows to estimate the dynamic heating and position of cold spots in particulate-food sterilization in still retort. The computer runs were performed with nutritional and thermodynamic data obtained for diverse canned foods as tuna in water; traditionally-baked beans and peas in brine. We observed that the required time for obtaining commercial sterility is practically the same if the viscosity of interstitial fluid is considered as temperature function or it is assumed at constant value. Furthermore, if Darcy number is increased, the required sterilization time decreases. In the case of peas in brine packed in 303x407 cans, a thermal processing time of 17 minutes is predicted for obtaining commercial sterility equivalent to F0 = 2.52 minutes,
when the steam in the retort remains at 121° C

References

Bird, R. B., Stewart, W. E. y Lightfoot, E. N. (2002). Transport Phenomena. 2a Ed, John Wiley & Sons, Inc. EUA.

Cacace, D., Palmieri, L., Pirone, G. y Dipollina, G. (1994). Biological validation of mathematical modeling of the thermal processing of particulate food: the influence of heat transfer coefficient determination. Journal of Food Engineering 23, 51-68.

Carbonell, R. G. y Whitaker, S. (1984). Heat and mass transport in porous media. En: Mechanics of Fluid in Porous Media. (J. Bear y Corapcioglu, M. Y., eds.) Pp 121-198, Martinus Nijhoff, Bruselas.

Choi, Y. y Okos, M. (1986). Effects of temperature and composition on thermal properties of foods. En: Food engineering and process applications, Vol I. Transport Phenomenon. (L. Maguer y P. Jelens, eds.) Pp 93-101, Elsevier, Nueva York.

Datta, A. K. y Teixeira, A.A. (1988). Numerically predicted transient temperature and velocity profiles during natural convection heating of canned liquid foods. Journal of Food Science 53, 191-195.

Farid, M. y Ghani, A. G. (2004). A new computational technique for the estimation of sterilization time in canned food. Chemical Engineering and Processing 43, 523-531.

Finlayson, B. A. (1980). Nonlinear Analysis in Chemical Engineering. McGraw-Hill Book Co. EUA.

Gadonna, J. P., Pain, J. P. y Barigou, M. (1996). Determination of the convective heat transfer coefficient between a free particle and a conveying fluid in a horizontal pipe. Food and Bioproducts Processing 74 (C1), 27-39.

Ghani, A. G., Farid, M. M., Chen, X. D., y Richards, P. (1999). Numerical simulation of natural convection heating of canned food by computational fluid dynamics. Journal of Food Engineering 41, 55-64.

Ghani, A. G., Farid, M. M., Chen, X. D. y Richards, P. (1999b). An investigation of deactivation of bacteria in a canned liquid food during sterilization using computational fluid dynamics (CFD). Journal of Food Engineering 42, 207-214.

Ghani, A. G., Farid, M. M., Chen, X. D. y Richards, P. (2001). Thermal sterilization of canned food in a 3-D pouch using computational fluid dynamics. Journal of Food Engineering 48, 147-156.

Ghani, A. G., Farid, M. M. y Chen, X. D. (2002). Theoretical and experimental investigation of the thermal inactivation of Bacillus stearothermophilus in food pouches. Journal of Food Engineering 51, 221-228.

Ghani, A. G., Farid, M. M. y Zarrouk, S. J. (2003). The effect of can rotation on sterilization of liquid food using computational fluid dynamics. Journal of Food Engineering 57, 9-16.

Heldman, D. R. y Lund, D. B. (1992). Handbook of Food Engineering. Marcel Dekker, Inc.

Jiménez Islas, H. (1999). Modelamiento Matemático de la Transferencia de Momentum, Calor y Masa en Medios Porosos. Tesis Doctoral. Universidad Autónoma Metropolitana, México D. F.

Jiménez-Islas, H. (2001). Natural convection in a cubical porous cavity: solution by orthogonal collocation. In: Computational Fluid Dynamics. Proceedings of the Fourth UNAM Supercomputing Conference. Pp 173-180. World Scientific Publishing Co. Singapur.

Jiménez-Islas, H., González-Calderón, L. M., Botello-Álvarez, J. E. y Navarrete-Bolaños, J. L. (2003). Efecto del número de darcy y el aspecto geométrico sobre el punto frío y el grado letal en la esterilización de alimentos que contienen partículas. XXIV Encuentro Nacional de AMIDIQ. Ixtapa- Zihuatanejo, Gro. México.

Jiménez-Islas, H. y López-Isunza F. (1996). PARCOL2: Programa para resolver sistemas de ecuaciones diferenciales parciales parabólicas no lineales, por doble colocación ortogonal. Avances en Ingeniería Química 6 (2), 168-173.

Jiménez-Islas, H., López-Isunza, F. y Ochoa-Tapia, J. A. (1999). Natural convection in a cylindrical porous cavity with internal heat source: a numerical study with Brinkmanextended Darcy model. International Journal of Heat and Mass Transfer 42, 4185-4195.

Kumar, A. y Bhattacharya, M. (1991). Transient temperature and velocity profiles in a canned non-newtonian liquid food during sterilization in a still-cook retort. International Journal of Heat and Mass Transfer 34 (4-5), 1083-1096.

Kumar, A., Bhattacharya, M. y Blaylock, J. (1990). Numerical simulation of natural convection heating of canned thick viscous liquid food products. Journal of Food Science 55, 1403-1411.

iu, Y. y Zuritz, C. (1995). Mathematical modeling of solid-liquid 2-phase tube flow. an application to aseptic processing. Journal of Food Process Engineering 18 (2), 135-163.

López-Chaverri, R. (1999). Development of Environmental Performance Indicators: The Case of Fish Canning Plants. M.S. Thesis. Lund University. Suecia.

Lucatero-Chávez, S. (2000). Estudio Numérico de la Transferencia de Calor en la Esterilización de Alimentos. Tesis de Licenciatura. Instituto Tecnológico de Celaya. México

Mankad, S., Branch, C.A., Fryer, P. J. (1995). The effect of particle slip on the sterilization of solid-liquid food mixtures. Chemical Engineering Science 50, 1323-1336.

Mongkhonsi, T., López-Isunza, H. F. y Kershenbaum, L. S. (1992). The distortion of measured temperature profiles in fixed bed reactors. Transactions of IchemE 70, Part A, 255-264.

National Canners Association. Research Laboratories. (1979). Laboratory Manual for Food Canners and Processors. Volume I. Microbiology and Processing. The AVI Publishing Company 3a Ed. Inc. Westport, Connecticut.

Nield, D.A. y Bejan, A. (1992). Convection In Porous Media. Springer-Verlag, EUA.

Potter, N. N. y Hotchkiss, J. H. (1999). Food Science. Academic Kluwer Publishers. 5a Ed.

Roache, P. J. (1972). Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, N. M., EUA.

Teixeira, A., Welt, B., Chau, K., Balaban, M. y Hintenlang, D. (1997). Explicit finite difference methods for heat transfer simulation and thermal process design. Journal of Food Science 62, 230-236.

Vemuri, V. y Karplus, W. J. 1981. Digital Computer Treatment of Partial Differential Equations. Prentice Hall. Englewood, Cliffs, N.J., EUA.

Wang, Q., Sakai, N. y Hanzawa, T. (2000). Numerical analysis of heat transfer of canned liquid foods containing fibers or particles during sterilization. Journal of Chemical Engineering of Japan 33 (5), 703-708.

Whitaker, S. (1986). Flow in porous media I: a theoretical derivation of Darcy’s law. Transport in Porous Media 1, 3-25.

Whitaker, S. (1999). The Method of Volume Averaging. Kluwer Academic Publishers. Dordrecht, Holanda.

Xiao-Yan-L. y Bruce, E. L. (2001). Permeability of fractal aggregates. Water Research 35, 3373-3380

Zhang, Z. (2002). The effect of thermocouple and receptacle type on observed heating characteristics of conduction-heating foods packaged in small metal containers. Journal of Food Process Engineering 25, 323-335.

Zechman, L.,G. y Pflug, I. J. (1989). Location of the slowest heating zone for naturalconvection- heating fluids in metal containers. Journal of Food Science 54, 205-210.
Published
2020-09-30
How to Cite
Jiménez-Islas, H., González-Calderón, L. M., Botello-Alvarez, J. E., & Navarrete-Bolaños, J. L. (2020). NUMERICAL STUDY FOR THERMAL STERILIZATION IN CANNED LIQUID FOOD CONTAINING PARTICLES USING POROUS MEDIA APPROACH. Revista Mexicana De Ingeniería Química, 4(1), 1-23. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2073

Most read articles by the same author(s)