• O. Soto-Cruz
  • J. Páez-Lerma
Keywords: elemental balances, metabolism, stoichiometric model


Stoichiometric balances in fermentation processes are esential for their understanding and/or application. The calculation of metabolic flows is fundamental in quantitative studies of cellular physiology. Metabolic flux analysis is a powerful tool for the determination of the flows in the network of biochemical reactions. Intracellular fluxes are calculated using a stoichiometric model that describes the biochemistry of the microorganism. Metabolic flux analysis is particularly useful in connection with studies of metabolite production, where the objective is to direct as much carbon as it is possible from a substrate towards a metabolic product, besides to allow the calculation of nonmeasured extracellular fluxes and maximum theoretical yields, identification of alternating metabolic pathways and branched nodes of metabolic control. This work presents a revision of methodologies of consistency and metabolic flux analysis and their application to fermentation systems.


Aiba, S. y Matsuoka, M. (1979). Identification of metabolic model: citrate production from glucose by Candida lipolytica. Biotechnology Bioengineering 21, 1373-1386.

Causey, T. B., Shanmugam, K. T., Yomano, L. P. y Ingram, L. O. (2004). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences 101, 2235- 2240

Erickson, L. E., Minkevich, I. G. y Eroshin, V. K. (1978). Application of mass and energy balance regularities in fermentation. Biotechnolology Bioengineering 20, 1595- 1621.

Fell, D. A. y Small, J. R. (1986). Fat synthesis in adipose tissue. An examination of stoichometric constrains. Biochemistry Journal 238, 781-786.

Jørgensen, H., Nielsen, J., Villadsen, J. y Mølgaard, H. (1995). Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnology Bioengineering 46, 117-131.

Madron, F., Veverka, V. y Vanecek, V. (1977). Statistical analysis of material balance of a chemical reactor. AIChE Journal 23, 482- 486.

Nielsen, J. (2001). Metabolic engineering. Applied Microbiology Biotechnology 55, 263-283.

Nielsen, J. y Villadsen, J. (1994) Bioreaction engineering principles. Plenum Press. Nueva York, EUA.

Nissen, T. L., Schulze, U., Nielsen, J. y Villadsen, J. (1997). Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203-218.

Noble, B. y Daniel, J. W. (1977). Applied linear algebra. Prentice-Hall. Englewood Cliffs, NJ, EUA.

Roels, J. A. (1983). Energetics and kinetics in biotechnology. Elsevier Biomedical Press. Amsterdam, Holanda.

Savinell, J. M. y Palsson, B. O. (1992). Network analysis of intermediary metabolism using linear optimization: I. Development of mathematical formalism. Journal Theoretical Biology 154,421-454.

Schulze, U. (1995). Anaerobic physiology of Saccharomyces cerevisiae. Ph. D. Thesis. Technical University of Denmark. Lyngby, Dinamarca.

Soto-Cruz, O. (2002). Contribución al estudio de la fisiología y el metabolismo de la bacteria ruminal Megasphaera elsdenii. Uso de modelos no estructurados y análisis de flujos metabólicos. Tesis de Doctorado en Biotecnología. Universidad Autónoma Metropolitana. México, D. F.

Stephanopoulos, G. y Vallino, J. J. (1991). Network rigidity and metabolic engineering in metabolite overproduction. Science 252, 1675-1681.

Stephanopoulos, G., Nielsen, J. y Aristodou, A. (1998). Metabolic engineering. Principles and methodologies. Academic Press, Nueva York

Torres, N. V. y Voit, E. O. (2002). Pathway analysis and optimization in metabolic engineering. Cambridge University Press, Reino Unido.

Tryfona, T. y Bustard, M. T. (2005). Fermentative production of lysine by Corynebacterium glutamicum: transmembrane transport and metabolic flux analysis. Process Biochemistry 40, 499-5005.

Tsai, S. P. y Lee, Y. H. (1988). Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data. Biotechnology Bioengineering 32, 713-715.

Vallino, J. J. y Stephanopoulos, G. (1990). Flux determination in cellular bioreaction networks: applications to lysine fermentation. En: Frontiers in bioprocessing. (S. K. Sikdar, M. Bierand y P. Todd eds.) Pp. 205-219. CRC Press. Boca Raton, Florida, EUA.

van der Heijden, R. T. J. M., Romein, B., Heijnen, J. J., Hellinga, C. & Luyben, K. Ch. A. M. (1994a). Linear constraint relations in biochemical reaction system: I. Classification of the calculability and the balanceability of conversion rates. Biotechnology Bioengineering 43, 3-10.

van der Heijden, R. T. J. M., Romein, B., Heijnen, J. J., Hellinga, C. & Luyben, K. Ch. A. M. (1994b). Linear constraint relations in biochemical reaction system: II. Diagnosis and estimation of gross errors. Biotechnology Bioengineering 43, 11-20.

van der Heijden, R. T. J. M., Romein, B., Heijnen, J. J., Hellinga, C. & Luyben, K. Ch. A. M. (1994c). Linear constraint relations in biochemical reaction system: III. Sequential application of data reconciliation for sensitive detection of systematic errors. Biotechnology Bioengineering 44, 781-791.

van Gulik, W. M. y Heijden, J. J. (1995). A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnoloy Bioengineering 48, 681-698.

Vanrollegem, P. A. y Heijnen, J. J. (1998). A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients. Biotechnology Bioengineering 58, 133-138.

Varma, A. y Palsson, B. O. (1994). Metabolic flux balancing: basic concepts, scientific and practical use. Biotechnology 12, 994- 998.

Varma, A., Boesch, B. W. y Palsson, B. O. (1993a). Biochemical production capabilities of Escherichia coli. Biotechnology Bioengineering 42, 59-73.

Varma, A., Boesch, B. W. y Palsson, B.O. (1993b). Stoichiometric interpretation of Escherichia coli catabolism under various oxygenation rates. Applied Environmental Microbiology 59, 2465-2473.

Wang, N. S. y Stephanopoulos, G. (1983). Application of macroscopic balances to the identification of gross measurement errors. Biotechnology Bioengineering 25, 2177-2208.

Watson, M. R. (1986). A discrete model of bacterial metabolism. Comprehesive Applied Bioscience 2, 23-27.

Zhao, J., Baba, T., Mori, H. y Shimizu, K. (2004). Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on C-13-labeling experiments and the measurement of enzyme activities. Applied Microbiology Biotechnology 64, 91-98.
How to Cite
Soto-Cruz, O., & Páez-Lerma, J. (2020). FERMENTATION PROCESS BALANCES: CONSISTENCY AND METABOLIC FLUX ANALYSIS. Revista Mexicana De Ingeniería Química, 4(1), 59-74. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2087