TEXTURE PROFILE ANALYSIS AND STRESS RELAXATION PROPERTIES OF CROSSLINKED WAXY MAIZE STARCH-GELLAN MIXED GELS

  • N. B. Casas-Alencáster
  • D. G. Pardo-García
Keywords: mixed hydrocolloids, gellan gels, crosslinked waxy maize starch, gels, stress relaxation tests, texture profile analysis, texture

Abstract

Textural and rheological properties of 1-4% w/w crosslinked waxy maize starch (CWMS) and 0.25% w/w gellan mixed gels were evaluated by texture profile analysis under uniaxial compression (TPC) and punction (TPP) at 12 and 43% strain, respectively, and stress relaxation tests at four strain levels (8, 12, 16, 19%). Presence of CWMS in gellan gels decreased hardness and increased springiness and cohesiveness. In PTP, all gels exhibited fracture, however, the presence and concentration of AMCE had an important effect in fracture characteristics. As CWMS concentration increased, fracture force decreased between 78.4 and 45.7% compared to gellan alone. A similar behavior was observed for distance at fracture. Although the linear viscoelasticity region was not reached, the stress relaxation curves showed a good fit to Maxwell Generalized model and the use of an empirical model revealed that gels with CWMS in their formulation, exhibited a higher solid-elastic behavior than those with gellan alone. Water loss due to syneresis showed a significant decrease while increasing starch concentration, in the order of 15.6% to 2.1%, depending on the concentration and applied deformation level.

References

Abdulmola, N.A., Hember, M.W.N., Richardson, R.K. y Morris, E.R. (1996a). Aplication of polymer blending laws to starch-gelatin composites. Carbohydrate Polymers 31, 53-63.

Abdulmola, N.A., Hember, M.W.N., Richardson, R.K. y Morris, E.R. (1996b). Effect of xanthan on the small-deformation rheology of crosslinked and uncrosslinked waxy maize starch. Carbohydrate Polymers 31, 65-78.

Descamps, O., Langevin, P. y Combs, D. H. (1986). Physical effect of starch/carrageenan interactions in water an milk. Food Technology Abril, 81-88.

Dickinson, E. y Walstra, P. (1993). Food Colloids and Polymers: stability and mechanical properties. Royal Society of Chemisty. Londres.

Durán, E., Costell, E., Izquierdo, L. y Durán, L. (1994). Low sugar bakery jams with gellan gum-guar gum mixtures. Influence of composition on texture. Food Hydrocolloids 8 (3-4), 373-381.

Gibson, W. y Sanderson, G.R. (1997). Gellan Gum. En: Thickening and Gelling Agents for Food (2da. ed.), (Imeson, A., ed.), Pp. 119-142. Blackie Academic & Professional, Londres.

Gross, M.O., Rao, V.N.M. y Smit, C.J.B. (1980). Rheological characterization of lowmethoxyl pectin gel by normal creep and relaxation. Journal of Texture Studies 11, 271-290.

Guo, Z., Castell-Pérez, M.E. y Moreira, R.G. (1999). Characterization of masa and lowmoisture corn tortilla using stress relaxation methods. Journal of Texture Studies 30, 197-215.

Herrera, M.G., Tecante, A. y Doublier, J.L. (2001). Steady and small-deformation rheology of crosslinked waxy maize starchgellan pastes and co-gels. En: Proceedings of the Eighth International Congress on Engineering and Food, (J. Welty-Chanes, G.V. Barbosa-Cánovas, y J. M. Aguilera, eds.), Pp. 514-518. Technomic Pub. Co. Inc., Pennsylvania.

Lau, M.H., Tang, J. y Paulson, A.T. (2000). Texture profile and turbidity of gellan/gelatin mixed gels. Food Research International 33, 665-671.

Moritaka, H., Nishinari, K., Taki, M. y Fukuba, H. (1995). Effects of pH, potassium chloride, and sodium cloride on the thermal and rheological properties of gellan gum gels. Journal of Agriculture and Food Chemistry 43 (6), 1685-1689.

Nussinovitch, A., Ak, M.M., Normand, M.D. y Peleg M. (1990a). Characterization of gellan gels by uniaxial compression, stress relaxation and creep. Journal of Texture Studies 21, 37-49.

Nussinovitch, A., Kaletunc, G., Normand, M.D. y Peleg M. (1990b). Recoverable work versus asymptotic relaxation modulus in agar, carrageenan and gellan gels. Journal of Texture Studies 21, 427-438.

Papageorgiou, M. y Kasapis, S. (1995). The effect of added sucrose and corn syrup on the physical properties of gellan-gelatin mixed gels. Food Hydrocollods 9 (3), 211-220.

Papageorgiou, M., Kasapis, S. y Richardson, R.K. (1994). Steric exclusion phenomena in gellan/gelatin systems I. Physical properties of single and binary gels. Food Hydrocolloids 8 (2), 97-112.

Peleg, M. (1979). Characterization of the stress relaxation curves of solid foods. Journal of Food Science 44 (1), 277-281.

Peleg, M. y Normand, M.D. (1983). Comparison of two methods for stress relaxation data presentation of solid foods. Rheologica Acta 22, 108-113.

Pons, M. y Fiszman, S.M. (1996). Instrumental texture profile analysis with particular reference to gelled systems. Journal of Texture Studies 27, 597-624.

Rodríguez-Hernández, A.I., Tecante, A. y Doublier, J.L. (2001). Viscoelastic behavior of waxy maize starch-gellan mixtures under small amplitude oscillatory shear. En: Proceedings of the Eighth International Congress on Engineering and Food, (J. Welty-Chanes, G.V. Barbosa-Cánovas y J.M. Aguilera, eds). Pp. 509-513. Technomic Pub. Co. Inc., Pennsylvania.

Safari-Ardi, M. y Phan-Thien, N. (1998). Stress relaxation and oscillatory tests to distinguish between doughs prepared from wheat flours of different varietal origin. Cereal Chemistry 75 (1), 80-84.

Sanderson, G.R. y Ortega, D. (1994). Alginates and gellan gum: complementary gellling agents. En: Food Hydrocolloids: Structures, Properties and Functions, (K. Nishinari y E. Doi, eds.), Pp. 83-89. Plenum Press, Nueva York.

Sanderson, G.R. (1990). Gellan Gum. En: Food Gels, (P. Harris, ed.), Pp. 201-231. Elsevier Science, Londres.

Seguchi, M., Yasui, T., Hosomi, H., e Imai, T. (2000). Study of Internal Structure of Waxy Wheat Starch Granules by KI/I2 Solution. Cereal Chemistry 77 (3), 339-342.

Sworn, G. y Kasapis, S. (1998). Effect of conformation and molecular weight of cosolute on the mechanical properties of gellan gum gels. Food Hydrocolloids 12, 283-290.

Tang, J., Mao, R., Tung, M.A. y Swanson, B.G. (2001). Gelling temperature, gel clarity and texture of gellan gels containing fructose or sucrose. Carbohydrate Polymers 44, 197- 209.

Tang, J., Tung, M.A. y Zeng, Y. (1995). Mechanical properties of gellan gels in relation to divalent cations. Journal of Food Science 60 (4), 748-752.

Tang, J., Tung, M.A., Lelievre, J. y Zeng, Y. (1997). Stress-Strain relationships for gellan gels in tension, compression and torsion. Journal of Food Engineering 31, 511-529.

Tecante, A. y Doublier, J.L. (1999). Steady flow and viscoelastic behavior of crosslinked waxy corn starch–k-carrageenan pastes and gels. Carbohydrate Polymers 40, 221-231.

Shi, X. y BeMiller, J.N. (2002). Effects of food gums on viscosities of starch suspensions during pasting. Carbohydrate Polymers 50, 7-18.
Published
2020-10-09
How to Cite
Casas-Alencáster, N. B., & Pardo-García, D. G. (2020). TEXTURE PROFILE ANALYSIS AND STRESS RELAXATION PROPERTIES OF CROSSLINKED WAXY MAIZE STARCH-GELLAN MIXED GELS. Revista Mexicana De Ingeniería Química, 4(1), 107-121. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2090