GENERALIZATION OF THE TRANSPORT THEOREM FOR A VECTORIAL SPACE Rn- DERIVATION OF THE POPULATION BALANCE EQUATION FOR A BUBBLE COLUMN

  • J. Ramírez-Muñoz
  • J. Hernández-Aguilar
  • A. Soria
Keywords: transport theorem, population balance equation, bubbling column

Abstract

The transport theorem is a mathematical tool that allows to derive balance equations in continuum mechanics and population balance equations (PBE) in which the population of particles is distributed according to a set of state variables. The three-dimensional transport theorem (Truesdell and Toupin, 1960) is generalized for a Rn space in this work and had been particularized for R7. The proposed methodology is presented whit detail and a physical interpretation of the steps and important terms is given. Finally, it is obtained the PBE for a bubbling column starting with the principle of conservation of particles

References

Aris, R. (1989). Vectors, tensors, and the basic equations of fluid mechanics. Dover Publications, Inc. Nueva York, EUA.

Bayens, C. A. y Laurence, R. L. (1969). Model for Mass Transfer in Coalescing Dispersion. Industrial Engineering Chemical Fundamentals 8, 71-77.

Das, P. K., Kumar R. y Ramkrishna D. (1987). Coalescence of drops in stirred dispersion. A white noise model for coalescence. Chemical Engineering Science 42, 213-220.

Hulburt, H. y Katz, S. (1964). Some problems in particle technology. A statistical mechanical formulation. Chemical Engineering Science 19, 555-574.

Ramkrishna, D. (2000). Population balances. Theory and applications to particulate systems in engineering. Academic Press, Nueva York, EUA.

Ramkrishna, D. y Mahoney A. W. (2002). Population balances modeling. Promise for the future. Chemical Engineering Science 57, 595-606.

Ramkrishna, D. (1978). The prospects of population balances. Chemical Engineering Education 12, 14-17.

Randolph, A. D. y Larson M. A. (1971). Theory of particulate processes. Academic Press, Nueva York, EUA.

Schlunder, E. V. (1977). On the mechanism of mass transfer in heterogeneous systems-in particular in fixed beds, fluidized beds and on bubble trays. Chemical Engineering Science 32, 845-851.

Schumpe, A. y Deckewer, W.D. (1980). Analysis of chemical methods for determination of interfacial areas in gas-in-liquid dispersions with non-uniform bubble sizes. Chemical Engineering Science 35, 2221-2234.

Shah, B. H. y Ramkrishna, D. (1973). A population balance model for mass transfer in lean liquid-liquid dispersions. Chemical Engineering Science 28, 389-399.

Slatterry, J. C., (1999). Advanced transport phenomena. Cambridge University Press, EUA.

Taitel, Y., Bornea, D. y Dukler, A. E. (1980). Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. American Institute of Chemical Engineers 26, 345-354.

Truesdell, C. y Toupin, R. A. (1960). The classical field theories. In S. Flügge, (ed.), Handbuch der Physik, Vol. 3/3. Berlin: Springer-Verlag, Alemania.

Yeoh, G. H. y Tu, J. Y. (2004). Population balance modeling for bubbly flows with heat and mass transfer. Chemical Engineering Science 59, 3125-3139.

Zamora, J. M. (1990). Solución numérica del balance de población para sistemas de partículas con el método del elemento finito con colocación nodal y malla adaptable. Tesis de Maestría. Universidad Autónoma Metropolitana-Iztapalapa, México, D. F.
Published
2020-10-15
How to Cite
Ramírez-Muñoz, J., Hernández-Aguilar, J., & Soria, A. (2020). GENERALIZATION OF THE TRANSPORT THEOREM FOR A VECTORIAL SPACE Rn- DERIVATION OF THE POPULATION BALANCE EQUATION FOR A BUBBLE COLUMN. Revista Mexicana De Ingeniería Química, 4(2), 171-180. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2105