MINLP SYNTHESIS OF HEAT EXCHANGER NETWORKS INCLUDING DIFFERENT EXCHANGER TYPES AND PRESSURE DROP EFFECTS

  • J. de los Santos-Juárez
  • V. Rico-Ramírez
Keywords: heat exchanger networks, heat exchangers types, MINLP techniques

Abstract

In this paper we extend the simultaneous optimization approach for the design of heat exchanger networks. The MINLP model developed by Yee and Grossmann (Comput. Chem. Eng. 14 (1990) p. 1165) has been modified to consider power costs and pressure drop effects as well as to incorporate alternative exchanger types and flow patterns. Such incorporations not only require additional constraints to provide feasible temperature distributions but also increase the combinatorics, size and computational effort needed to solve the problem. However, it is shown that a formulation based on the convex hull representation for heat transfer area, pressure drop, correction factors (for pressure drop and temperature) and temperature approach, drastically reduces both the nonlinearities and the number of optimization variables involved. The resulting model can be solved by using DICOPT++ through the GAMS modeling environment. Finally, three examples are used to illustrate the scope and relevance of the approach.

References

Briones, V. y Kokossis, A. C. (1999). Hypertargets: a Conceptual programming approach for the optimisation of industrial Heat Exchanger Networks. Chemical Engineering Science 54, 541-561.

Chen, J. J. J. (1987). Letter to Editors: Comments on improvement on a replacement for the Logarithmic Mean. Chemical Engineering Science 42, 2488-2489.

Daichendt, M. M. y Grossmann, I. E. (1994). Preliminary screening procedure for the MINLP synthesis of process systems-II. Heat Exchanger Networks. Computers and Chemical Engineering 18, 679-709.

De los Santos-Juárez, J. (2003). Síntesis MINLP de Redes de Intercambio de Calor Incorporando Diferentes Tipos de Intercambiadores. Tesis de Maestría, Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, México.

Frausto-Hernández, S. (2002). Síntesis de Redes de Intercambio de Calor Incorporando Efectos de Potencia. Tesis de Maestría, Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, México.

Frausto-Hernández, S., Rico-Ramírez, V., Jiménez-Gutiérrez, A. y Hernández-Castro, S. (2003). MINLP Synthesis of Heat Exchanger Networks Considering Pressure Drop Effects. Computers and Chemical Engineering 27, 1143-1152.

Ganapathy, V. (1982). Applied Heat Transfer. Pennwell Publishing Co. Tulsa, Oklahoma, EUA.

Hewitt, G. F., Shires, G. L. y Bott, T. R. (1994). Process Heat Transfer. CRC Press.

Nie, X. R. y Zhu, X. X. (1999). Heat Exchanger Network Retrofit Considering Pressure Drop and Heat-Transfer Enhancement, AIChE Journal 45, 1239-1249.

Polley, G. T. y Panjeh Shahi, M. H. (1991). Interfacing Heat Exchanger Network Synthesis and Detailed Heat Exchanger Design. Trans IchemE. 69, 445-457.

Quesada, I. y Grossmann, I. E. (1993). Global Optimization Algorithm for Heat Exchanger Networks. Industrial Engineering. Chemical Research 32, 487- 499.

Serna, G. M. (1999). Desarrollo de Algoritmos Rigurosos para la Integración Térmica de Procesos. Tesis de Doctorado. Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, México.

Shenoy, U. V. (1995). Heat Exchanger Network Synthesis. Process Optimization by Energy and Resource Analysis. Gulf Publishing Company.

Sorsak, A. y Kravanja, Z. (2001). Simultaneous MINLP Synthesis of Heat Exchanger Networks Comprising Different Exchanger Types. In the Proceedings of the ESCAPE11 Conference. Kolding, Dinamarca.

Yee, T. F. y Grossmann, I. E. (1990). Simultaneous optimization models for heat integration - II. Heat exchanger network synthesis Computers and Chemical Engineering 14, 1165-1184.

Zamora, J. M. y Grossmann, I. E. (1998). A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Computers and Chemical Engineering 22, 367- 384.
Published
2020-10-26
How to Cite
de los Santos-Juárez, J., & Rico-Ramírez, V. (2020). MINLP SYNTHESIS OF HEAT EXCHANGER NETWORKS INCLUDING DIFFERENT EXCHANGER TYPES AND PRESSURE DROP EFFECTS. Revista Mexicana De Ingeniería Química, 3(1), 65-83. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2133