• R. Salazar-Mendoza
  • A. Vázquez-Rodríguez
  • J. R. Ramos-Alcántara
  • E. G. Espinosa-Martínez
  • G. Espinosa-Paredes
Keywords: two-phase, cuttings transport, solid-liquid flow, modeling, volume averaging


In this paper a methodology to obtain a two-region averaging model is presented. The model was applied to study a two-region two-phase flow system in horizontal pipes. The analysis considers a moving bed of drilling cuttings (γ -region) below of a two-phase dispersed flow (ω -region). To derive a rigorous mathematical model in which each variable is precisely defined, the method of volume averaging was applied. This model includes the volume-averaged transport equations for both regions and coupling terms obtained from a macroscopic forces balance. In order to solve the one-dimensional, time dependent, mathematical model, a backward finite difference explicit scheme with a point-distributed grid, consisting of 100x100 nodes, was applied. The simulated physical system is a pipe of 4.135 m long and 0.0508 m in diameter. The numerical simulation allows the prediction of the behavior of the pressure gradient of a flow with a moving bed as a function of velocity, total volume fraction of cuttings, cuttings density and the relation between the height of the moving bed and the pipe diameter. The numerical results agree with experimental data on slurry flows reported in literature. The maximum relative error between simulated results and experimental data was found to be 6.8%.


Babcock, H. A. (1971). Heterogeneous flow of heterogeneous solids. En Advances in Solid Liquid Flow in Pipes and its Applications (Ed I.Zandi,), Pp 125-148. Pergamon Press, Oxford, Inglaterra

Carbonell, R. G. y Whitaker, S. (1984). Heat and mass transport in porous media. En Mechanics of Fluid in Porous Media, (Eds. J. Bear y M. Y. Corapcioglu). Martinus Nijhoff, Bruselas, Bélgica

Carleton, A. J., French, R. J., James, J. G. Broad, B. A. y Streat, M. (1978). Hydraulic transport of large particles using conventional and high concentration conveying. Proceedings 5th International Conference on the Hydraulic Transport of Solids in Pipes, D2, 15-28.

Chhabra, R. P. y Richardson, J. F. (1983). Hydraulic transport of coarse gravel particles in a smooth horizontal pipe. Chemical Engineering Research and Design 61, 313-317.

Cho, H., Shah, S. N. y Osisanya, S. O. (2000). A three-layer modeling for cuttings transport with coiled tubing horizontal drilling. SPE Annual Technical Conference and Exhibition, 63269.

Cho H., Shah, S. N., y Osisanya, S. O. (2002). A three-segment hydraulic model for cuttings transport in coiled tubing horizontal and deviated drilling. Journal of Canadian Petroleum Technology 41(6), 32-39.

Dongarra, J.J., Bbunch, J.R., Moler, C.B. y Stewart, G.B. (1990). LINPACK User Guide. The Society for Industrial and Applied Mathematics

Doron, P., Granica, D. y Barnea, D. (1987). Slurry flow in horizontal pipesexperimental and modeling. International Journal of Multiphase Flow 13 (4), 535-547.

Doron, P. y Barnea, D. (1993). A three-layer model for solid-liquid flow in horizontal pipes. International Journal of Multiphase Flow 19 (6), 1029-1043.

Doron, P. y Barnea, D. (1995). Pressure drop and limit deposit velocity for solidliquid flow in pipes. Chemical Engineering Science 50 (10), 1595-1604.

Doron, P. y Barnea, D. (1996). Flow pattern maps for solid-liquid flow in pipes. International Journal of Multiphase Flow 22 (2), 273-283.

Doron, P., Simkhis, M. y Barnea, D. (1997). Flow of solid-liquid mixtures in inclined pipes. International Journal of Multiphase Flow 23 (2), 313-323.

Durand, R. (1953). Basic relationships of the transportation of solids in pipes –experimental research. Proceedings 5th International Hydraulics Convention 89-103.

Espinosa-Paredes, G., Cazarez-Candia, O., García-Gutiérrez, A. y Martínez- Méndez, J. (2002). Void propagation in a bubbly two-phase flow with expansion effects. Annals of Nuclear Energy 29, 1261-1298.

Gavignet, A.A. and Sobey, I.J. (1989). Model aids cuttings transport prediction. Journal of Petroleum Technology, Septiembre, 916-921.

Gillies, R. G., Shook, C. A. y Wilson, K. C. (1991). An improved two-layer model for horizontal slurry pipeline flow. Canadian Journal of Chemical Engineering 69, 173-178.

Ishii, M. y Mishima, K. (1984). Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design 82, 107-126.

Kamp, A. M. y Rivero, M. (1999). Layer Modeling for Cuttings Transport in Highly Inclined Wellbores. SPE Latin American and Caribbean Petroleum Engineering Conference, 53942.

Kunii, D. y Levenspiel, O. (1991). Fluidization Engineering, 2a Ed. Butterworth-Heinemann Reed Publishing, Boston, EUA.

Martins, A. L. y Santana, C. C. (1992). Evaluation of cutting transport in horizontal and near horizontal wells – A dimensionless approach. SPE Latin American Petroleum Engineering Conference, 23643.

Newitt, D. M., Richardson, J. F., Abbott, M. y Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions Instrument Chemical Engineers 33, 93-113.

Nguyen, D. and Rahman, S. S. (1996). A three-layer hydraulic program for effective cuttings transport and hole cleaning in highly deviated and horizontal wells. IADC/SPE Asia Pacific Drilling Technology, 36383.

Nguyen, D. y Rahman, S. S. (1998). A threelayer hydraulic program for effective cuttings transport and hole cleaning in highly deviated and horizontal wells. 182-189.

Noda, K., Takahashi, H. y Kawashima, T. (1984). Relation between behavior of particles and pressure loss in horizontal pipes. En: Proceedings 9th International Conference on the Hydraulic Transport of Solids in Pipes D4, 191-205.

Ramadan, A., Skalle, P., Johansen, S.T., Svein, J. y Saasen, A. (2001). Mechanistic model for cuttings removal from solid bed in inclined channels. Journal of Petroleum Science and Engineering 30, 129-141.

Salazar-Mendoza, R. (2004). Modelo hidrodinámico para el estudio del transporte de recortes de perforación en la sección horizontal de pozos petroleros. Tesis de Doctorado. Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos, México.

Salazar-Mendoza, R., Espinosa-Paredes, G., García, A., Cazarez-Candia, O., Díaz, A., y Vazquez, A. (2004). Averaging model for cuttings transport in horizontal drilling. GRC Transactions 28, 169-175.

Televantos, Y., Shook, C., Carleton, A. y Streat, M. (1979). Flow of slurries of coarse particles at high solids concentrations. Canadian Journal of Chemical Engineering 57, 255-262.

Turian, R. M. y Yuan, T. F. (1977). Flow of slurries in pipelines. AIChE Journal 23, 232-243.

Wallis, G. B., (1969). One-Dimensional Two- Phase Flow. McGraw-Hill, Inc., Nueva York, EUA.

Whitaker, S. (1999). The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht, Holanda.

Wilson, K. C. (1976). A unified physicallybased analysis of solid-liquid pipeline flow. Proceedings 4ht International Conference on the Hydraulic Transport of Solids in Pipes, A1, 1-16.

Wilson, K. C. (1988). Evaluation of interfacial friction for pipeline transport models. Proceedings 11th Conference on the Hydraulic Transport of Solids in Pipes, 107-116.

Zandi, I. y Govatos, G. (1967). Heterogeneous flow of solid in pipelines. Proceedings American Society of Civil Engineers, Journal of Hydraulic Division 93 (HY3), 145-159.

Zanotti, F. y Carbonell, R.G. (1984). Development of transport equations for multiphase systems I: Generalized development for two-phase systems. Chemical Engineering Science 39, 263- 278.
How to Cite
Salazar-Mendoza, R., Vázquez-Rodríguez, A., Ramos-Alcántara, J. R., Espinosa-Martínez, E. G., & Espinosa-Paredes, G. (2020). A TWO-REGION AVERAGING MODEL FOR SOLID-LIQUID FLOW WITH A MOVING BED IN HORIZONTAL PIPES. Revista Mexicana De Ingeniería Química, 3(3), 273-286. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2170