EFFECT OF SURFACTANT REMOVAL METHOD ON THE TEXTURE OF Ti(R)-MCM-41

  • T. Klimova-Berestneva
  • J.M. Martínez-Rosales
  • J. Ramírez-Solís
Keywords: structure, MCM-41, surfactant removal, texture, titania

Abstract

The influence of the template extraction method and the Ti content on the textural and structural characteristics of Ti-MCM-41 materials is reported. The synthesized solids were characterized by N2 physisorption, XRF, XRD, HREM, FT-Raman and UV-vis. diffuse reflectance spectroscopy (DRS). Between the two methods used to remove the surfactant, the application of polar solution (0.05 M H2SO4 in ethanol) resulted to be more efficient reducing the destruction of mesoporous material during the calcination step. The samples prepared by this method demonstrated more ordered hexagonal pore structure (HREM, XRD) with higher values of specific surface area and pore volume. The order of hexagonal arrangement of pores in Ti-MCM-41 materials and their textural characteristics (SBET and total pore volume) descease with the TiO2 content indicating that it is possible to incorporate isomorphically into the MCM-41 framework during the synthesis only small amounts of TiO2.

References

Balachandran, U. y Eror, N. G. J. (1982). Raman spectra of titanium dioxide. Journal of Solid State Chemistry 42, 276-282.

Blasco, T., Corma A., Navarro, M. T. y Pérez-Pariente, J. (1995). Synthesis characterization, and catalytic activity of Ti-MCM-41 structures. Journal of Catalysis 156, 65-74.

Camblor, M.A., Corma, A. y Martínez, A. (1992). Synthesis of a Titanium silicoaluminate isomorphous of zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules. Journal of Chemical Society Chemical Communications 589-590.

Clerici, M.G., Bellussi, G. y Romano, U. (1991). Synthesis of propylene oxide from propylene and hydrogen peroxide catalized by titanium silicate. Journal of Catalysis 129, 159-167.

Corma, A., Camblor, M.A., Esteve, P., Martínez, A. y Pérez-Pariente, J. (1994). Activity of Ti-Beta catalyst for the selective oxidation of alkenes and alkanes. Journal of Catalysis 145, 151-158.

Corma, A., Kan, Q., Navarro, M.T., Pérez-Pariente, J. y Rey, F. (1997). Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chemistry Materials 9, 2123-2126.

Klimova, T., Rodríguez, E., Martínez, M. y Ramírez, J. (2001). Synthesis and characterization of hydrotreating Mo catalysts supported on titania modified MCM-41. Microporous and Mesoporous Materials 44-45, 357-365.

Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. y Beck, J.S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature 359, 710-712.

Maschmeyer, T., Rey, F., Sankar, G. y Thomas, J.M. (1995). Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159-162.

Reddy, J.S., Kumar, R. y Ratnasamy, P. (1990). Titanium silicalite-2: synthesis, characterization and catalytic properties. Applied Catalysis 58, L1-L4.

Rhee, C.H. y Lee, J.S. (1997). Preparation and characterization of titanium-substituted MCM-41. Catalysis Today 38, 213-219.

Tanev, P.T., Chibwe, M. y Pinnavaia, T.J. (1994). Titanium containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321-323.

Thangaraj, A., Kumar, R., Mirajkar, S.P. y Ratnasamy, P. (1990). Catalytic properties of crystalline titanium silicalites. Journal of Catalysis 30, 1-8.
Published
2020-11-11
How to Cite
Klimova-Berestneva, T., Martínez-Rosales, J., & Ramírez-Solís, J. (2020). EFFECT OF SURFACTANT REMOVAL METHOD ON THE TEXTURE OF Ti(R)-MCM-41. Revista Mexicana De Ingeniería Química, 1(3), 105-110. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2189