Comparative study of chemical process and biotechnological process for the removal of bismuth from mining concentrates

  • K.I. Vargas-Rubio
  • H. Medrano-Roldan
  • D. Reyes-Jáquez Tecnológico Nacional de México - Instituto Tecnológico de Durango
Keywords: Bioleaching, Arsenic coprecipitation, Bismuth

Abstract

In 2018, approximately 17.7 billion metric tons of minerals were produced worldwide, which represent a great importance in the industrial sector. However, most of the minerals are bound with metallic elements, which lower the price of the metals of interest. Secondary materials in valuable metal extraction processes can cause various problems in the mining industry, both economic and environmental. This research aimed evaluate two treatments for the reduction of the bismuth concentration in gold and silver mineral concentrates: Bioleaching and co- precipitation with trioxide arsenic treatment, in the first, native microorganisms of the mineral to be treated were used to reduce the concentration of bismuth; in the second, arsenic trioxide was added in order to form a precipitate that contained bismuth.. The results showed that the chemical co-precipitation treatment with arsenic trioxide can decrease the Bi concentration to a greater extent compared to the bioleaching treatment, up to 16% of the initial concentration, in addition to reducing the concentration of other undesirable elements in metals such as antimony and cadmium by 32 and 11% respectively. From this research work, a collaboration of two techniques can be proposed for a higher reduction of concentration and with greater efficiency.

References

Álvarez, V. Z. (2019). Biolixiviación de minerales sulfurados de cobre de baja ley. Universidad Complutense de Madrid. https://doi.org/http://dx.doi.org/10.18271/ria.2019.444
Castells, X. (2012). Procesos de beneficio de los minerales y sus principales residuos. In Reciclaje de Residuos industriales. Editoral: DiazdeSantos. Retrieved from https://books.google.com.mx/books?id=Y050E29iC-UC&pg=PA690&dq=Lixiviación+quimica+minera&hl=es-419&sa=X&ved=0ahUKEwil66LCl_fdAhXsRd8KHT7xDfoQ6AEIMzAC#v=onepage&q=Lixiviación quimica minera&f=false
DIFCO MANUAL. (2016). PRODUCT DATA SHEET SULPHATE API BROTH W / O SODIUM LACTATE.
Dreisinger, D. (2019). The economic implications of impurities and contaminants in semi finished mining products. Industrial Research Chair in Hidrometallurgy. Retrieved from https://www.ecometales.cl/ecometales/site/docs/20191113/20191113154836/2__david_dreisinger_presentation.pdf
Ferrer, A. (2003). Metales tóxicos pesados (pp. 1–38). https://doi.org/10.4321/S1137-66272003000200008
Ficeriová, J., Baláž, P., & Villachica, C. L. (2005). Thiosulfate leaching of silver, gold and bismuth from a complex sulfide concentrates. Hydrometallurgy, 77(1–2), 35–39. https://doi.org/10.1016/j.hydromet.2004.09.010
García, V. (2004). Capitulo III: Las bacterias. In Introducción a la microbiología (Segunda Ed, pp. 45–51). Costa Rica: Editorial EUNED. Retrieved from https://books.google.com.mx/books?id=K_ETVnqnMZIC&pg=PA47&dq=diferencias+entre+gram+negativa+y+gram+positiva&hl=es-419&sa=X&ved=0ahUKEwioz6HUga_lAhUS-6wKHecaBbgQ6AEIKTAA#v=onepage&q=diferencias entre gram negativa y gram positiva&f=false
Ha, T. K., Kwon, B. H., Park, K. S., & Mohapatra, D. (2015). Selective leaching and recovery of bismuth as Bi2O3from copper smelter converter dust. Separation and Purification Technology, 142, 116–122. https://doi.org/10.1016/j.seppur.2015.01.004
Javad, M., Kargar, M., & Nowroozi, J. (2019). The wide distribution of an extremely thermoacidophilic microorganism in the copper mine at ambient temperature and under acidic condition and its significance in bioleaching of a chalcopyrite. Revista Argentina de Microbiología, 51(1), 56–65. https://doi.org/10.1016/j.ram.2017.09.004
Martínez-Pérez, F. (2002). Tratamientos químicos - térmicos a los materiales. In La Tribología. LIMUSA.
Mier, J. L., Gómez, C., Ballester, A., & González, F. (1994). Effect of silver and bismuth on bioleaching of copper sulphide concentrates with thermophilic microorganisms. Hydrometallurgy, 370–383. https://doi.org/https://doi.org/10.1016/0892-6875(95)00059-Y
Noguchi, H., & Okibe, N. (2020). The role of bioleaching microorganisms in saline water leaching of chalcopyrite concentrate. Hydrometallurgy, 195(May), 105397. https://doi.org/10.1016/j.hydromet.2020.105397
Rawlings, D. E. (2005). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4, 1–15. https://doi.org/10.1186/1475-2859-4-13
Rodríguez, E., Gamboa, M., Hernández, F., & García, D. (2005). Observación microscópica de bacterias. In Bacteriología General. Costa Rica. Retrieved from https://books.google.com.mx/books?id=vwB0fgirgN0C&pg=PA68&dq=tinción+de+ziehl-neelsen&hl=es-419&sa=X&ved=0ahUKEwiU0KfGwJjfAhUQSa0KHTC4DwAQ6AEIKTAA#v=onepage&q=tinción de ziehl-neelsen&f=false
Srichandan, H., Mohapatra, R. K., Singh, P. K., Mishra, S., Parhi, P. K., & Naik, K. (2020). Column bioleaching applications, process development, mechanism, parametric effect and modelling: A review. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2020.07.012
Xiao, F., Mao, J., Cao, D., Shen, X., & Volinsky, A. A. (2012). The role of trivalent arsenic in removal of antimony and bismuth impurities from copper electrolytes. Hydrometallurgy, 125–126, 76–80. https://doi.org/10.1016/j.hydromet.2012.05.011
Published
2021-05-24
How to Cite
Vargas-Rubio, K., Medrano-Roldan, H., & Reyes-Jáquez, D. (2021). Comparative study of chemical process and biotechnological process for the removal of bismuth from mining concentrates. Revista Mexicana De Ingeniería Química, 20(3), Proc2215: 1-8. https://doi.org/10.24275/rmiq/Proc2215
Section
Process engineering

Most read articles by the same author(s)