Effect of two pasteurization methods on the content of bioactive compounds and antioxidant capacity of nance (Byrsonima crassifolia) pulp and their kinetics of loss during refrigerated storage

Keywords: nance pulp, pasteurization, bioactive compounds, kinetics


The aim of this work was to evaluate the effect of two pasteurization methods: Low Temperature Long Time (LTLT) carried out at 63 ± 2.0 °C/30 min and High Temperature Short Time (HTST) performed at 73 ± 2.0 °C/15 s on the physicochemical parameters, bioactive compounds, and antioxidant activity of the treated pulp during the refrigeration storage (4 °C) of nance pulp. The material processed by LTLT presented the lowest decrement of ascorbic acid, phenolic compounds, and antioxidant activity (DPPH). Rates of losses of ascorbic acid, phenolic compounds, and antioxidant capacity (DPPH and ABTS) were described by a first order kinetics. The rate constants obtained were higher for HTST pulp, except for the antioxidant capacity determined by ABTS which was slightly higher for LTLT pulp. The t1/2 values were, consequently, larger for LTLT pulp indicating a longer time for deceasing the concentration of the bioactive and the antioxidant capacity. Five main phenolic compounds were identified by HPLC: gallic, trans-ferulic and caffeic acids, rutin, and quercetin and the observed increment of the intensity of quercetin peak for LTLT treated pulp could be due to the breakage of rutin. Both pasteurization methods reduced microbial loads to recommended standards and LTLT reduced it more pronouncedly. LTLT pasteurization could be recommended the best alternative for the pasteurization of this pulp.


Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., de Carvalho Magalhães, C. E., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155-2159. https://doi.org/10.1016/j.foodres.2011.03.051
Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221(6), 731. https://doi.org/10.1007/s00217-005-0069-z
Badui Dergal, S. (2016). Química de los alimentos. México, Pearson Educación.
Cai, M., Xie, C., Lv, Y., Yang, K., & Sun, P. (2020). Changes in physicochemical profiles and quality of apple juice treated by ultrafiltration and during its storage. Food Science & Nutrition. https://doi.org/10.1002/fsn3.1593
Cao, L., Zhou, G., Guo, P., & Li, Y. (2011). Influence of pasteurising intensity on beer flavour stability. Journal of the Institute of Brewing, 117(4), 587-592. https://doi.org/10.1002/j.2050-0416.2011.tb00508.x
Cauvain, S. P., & Young, L. S. (2009). Bakery food manufacture and quality: water control and effects. John Wiley & Sons.
Chen, Y., Wang, M., Rosen, R. T., & Ho, C. T. (1999). 2, 2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. Journal of agricultural and food chemistry, 47(6), 2226-2228. https://doi.org/10.1021/jf990092f
Chen, Y., Yu, L. J., & Rupasinghe, H. V. (2013). Effect of thermal and non‐thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: A mini‐review. Journal of the Science of Food and Agriculture, 93(5), 981-986. https://doi.org/10.1002/jsfa.5989
Cserhalmi, Z., Sass-Kiss, A., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1-2), 49-54. https://doi.org/10.1016/j.ifset.2005.07.001
de Souza, V. R., Pereira, P. A. P., Queiroz, F., Borges, S. V., & Carneiro, J. D. D. S. (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food chemistry, 134(1), 381-386. https://doi.org/10.1016/j.foodchem.2012.02.191
del Rosario García-Mateos, M., Quiroz-González, B., Corrales-García, J., Ybarra-Moncada, M. C., & Leyva-Ruelas, G. (2019). Ozone-high hydrostatic pressure synergy for the stabilization of refrigerated pitaya (Stenocereus pruinosus) juice. Innovative Food Science & Emerging Technologies, 56, 102187. https://doi.org/10.1016/j.ifset.2019.102187
Diaz, V. (2015). Frutas tropicales: elaboración de pulpas, jugos y deshidratado. Obtenido de cuaderno tecnológico nº12: https://inti. gob. ar/ue/pdf/publicaciones/cuadernillo12. pdf, 15.
Domene, R., & Segura, M. (2014). Parámetros de calidad externa en la industria agroalimentaria. Fichas de Transferencia. España: CAJAMAR ADNAgro. Negocio Agroalimentario y Cooperativo.
Duarte, O. (2011). Nance (Byrsonima crassifolia (L.) Kunth). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 44-52e). Woodhead Publishing. https://doi.org/10.1533/9780857092618.44
Floros, J. D., Newsome, R., Fisher, W., Barbosa‐Cánovas, G. V., Chen, H., Dunne, C. P., ... & Knabel, S. J. (2010). Feeding the world today and tomorrow: the importance of food science and technology: an IFT scientific review. Comprehensive Reviews in Food Science and Food Safety, 9(5), 572-599. https://doi.org/10.1111/j.1541-4337.2010.00127.x
García, E., Fernández, I., & Fuentes, A. (2015). Determinación de polifenoles totales por el método de Folin-Ciocalteu. Universitat Politècnica de València. Escuela Técnica. http://hdl.handle.net/10251/52056
Gordon, A., Jungfer, E., da Silva, B. A., Maia, J. G. S., & Marx, F. (2011). Phenolic constituents and antioxidant capacity of four underutilized fruits from the Amazon region. Journal of agricultural and Food Chemistry, 59(14), 7688-7699. https://doi.org/10.1021/jf201039r
Hamacek, F. R., Martino, H. S., & Pinheiro-Sant’Ana, H. M. (2014). Murici, fruit from the Cerrado of Minas Gerais, Brazil: physical and physicochemical characteristics, and occurrence and concentration of carotenoids and vitamins. Fruits, 69(6), 459-472. https://doi.org/10.1051/fruits/2014032
Herbig, A. L., & Renard, C. M. (2017). Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chemistry, 220, 444-451. https://doi.org/10.1016/j.foodchem.2016.10.012
Irías-Mata A, Esquivel P, Jiménez VM, Carle R, Schweiggert RM. 2015. Nance (Byrsonima crassifolia) fruits, a source of lutein and zeaxanthin – macular carotenoids involved in human health. Universidad de Costa Rica. San Pedro, Costa Rica. Hohenheim University. Alemania. 1 p.
Kapešová, J., Petrásková, L., Markošová, K., Rebroš, M., Kotik, M., Bojarová, P., & Křen, V. (2019). Bioproduction of quercetin and rutinose catalyzed by rutinosidase: novel concept of “solid state biocatalysis”. International journal of molecular sciences, 20(5), 1112. https://doi.org/10.3390/ijms20051112
Kips L, De Paepe D, Van Meulebroek L, Van Poucke C, Larbat R, Bernaert N, Van Pamel E, De Loose M, Raes K, Van Droogenbroeck B. (2017). A novel spiral-filter press for tomato juice processing: Fate of phenolic compounds, carotenoids and ascorbic acid content during spiral-filter processing, thermal downstream processing and storage. Journal of Food Engineering. 213. 27-37. 10.1016/j.jfoodeng.2017.06.010.
Luna-Ramírez, K.Y., Arellano-Cárdenas, S., García-Pinilla, S. & M. Cornejo-Mazón (2017). Kinetic analysis of the stability of antioxidants in blackberry (Rubus fruticosus L.) Liquor.16(1).121-130. rmiq.org/iqfvp/Pdfs/Vol.%2016,%20No.%201/Alim6/Alim6.html
Mariutti, L. R., Rodrigues, E., Chisté, R. C., Fernandes, E., & Mercadante, A. Z. (2014). The Amazonian fruit Byrsonima crassifolia effectively scavenges reactive oxygen and nitrogen species and protects human erythrocytes against oxidative damage. Food research international, 64, 618-625. https://doi.org/10.1016/j.foodres.2014.07.032
Martínez-Flórez, S., González-Gallego, J., Culebras, J. M., & Tuñón, M. (2002). Los flavonoides: propiedades y acciones antioxidantes. Nutrición hospitalaria, 17(6), 271-278.
Medina-Torres, R., Salazar-García, S., & Gómez-Aguilar, J. R. (2004). Fruit quality indices in eight nance [Byrsonima crassifolia (L.) HBK] selections. HortScience, 39(5), 1070-1073. https://doi.org/10.21273/HORTSCI.39.5.1070
Moo-Huchin, V. M., Estrada-Mota, I., Estrada-León, R., Cuevas-Glory, L., Ortiz-Vázquez, E., y Vargas, M. D. L. V., ... & Sauri-Duch, E. (2014). Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chemistry, 152, 508-515. https://doi.org/10.1016/j.foodchem.2013.12.013
Nisar, R., Baba, W. N., & Masoodi, F. A. (2015). Effect of chemical and thermal treatments on quality parameters and antioxidant activity of apple (pulp) grown in high Himalayan regions. Cogent Food & Agriculture, 1(1), 1063797. https://doi.org/10.1080/23311932.2015.1063797
Olivares, A., Soto, C., Caballero, E., & Altamirano, C. (2019). Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology, 42, 42-48. https://doi.org/10.1016/j.ejbt.2019.10.002
Ordóñez-Santos, L. E., & Yoshioka-Tamayo, L. S. (2012). Cinética de degradación térmica de vitamina C en pulpa de mango (Mangifera indica L). Vitae, 19(1), S81-S83.
Osorio, C., Franco, M. S., Castaño, M. P., González-Miret, M. L., Heredia, F. J., & Morales, A. L. (2007). Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science and Emerging Technologies, 3(8), 353-359. 10.1016/j.ifset.2007.03.009
Peng, J., Tang, J., Barrett, D. M., Sablani, S. S., Anderson, N., & Powers, J. R. (2017). Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Critical reviews in food science and nutrition, 57(14), 2970-2995. https://doi.org/10.1080/10408398.2015.1082126
Pérez-Reyes, M. E., & Sosa-Morales, M. E. (2013). Mecanismos de transferencia de calor que ocurren en tratamientos térmicos de alimentos. Temas selectos de Ingeniería de alimentos, 7(1), 37-47.
Plaza, L., Crespo, I., de Pascual-Teresa, S., de Ancos, B., Sánchez-Moreno, C., Muñoz, M., & Cano, M. P. (2011). Impact of minimal processing on orange bioactive compounds during refrigerated storage. Food Chemistry, 124(2), 646-651. https://doi.org/10.1016/j.foodchem.2010.06.089
Quiroz-González, B., Ybarra-Moncada, M. C., Rodriguez-Martinez, V. S., Welti-Chanes, J. S., García-Mateos, M. R., Corrales-García, J., Ibarra, Moncada Ma. C., Leyva-Ruelas, G & Torres, J. A. (2020). Refrigerated storage of high hydrostatic pressure treated pitaya (Stenocereus pruinosus) Juice. Revista Mexicana De Ingeniería Química, 19(1), 387-399. https://doi.org/10.24275/rmiq/Alim588
Rábago-Panduro, L.M., Martin-Belloso. O., Welti-Chanes, J & Morales-de la Peña, M (2020). Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Revista Mexicana de Ingeniería Química, 19(3), 1439-1452. https://doi.org/10.24275/rmiq/Alim1149
Roque, A. C., Vela, G., Pérez, J., Escobar, R., & Ballinas, J. (2012). Nota Científica: Uso de nanche (Byrsonima crassifolia (L.) Kunth) en gelatina artesanal para niños. Etnobiología, 10(2), 50-55. ISSN-e 1665-2703
Rosenthal, A., Torrezan, R., Schmidt, F. L., & Narain, N. (2011). Preservation and processing of tropical and subtropical fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 419-485e). Woodhead Publishing. https://doi.org/10.1533/9780857093622.419
Rufino, M. D. S. M., Alves, R. E., de Brito, E. S., de Morais, S. M., Sampaio, C. D. G., Pérez-Jimenez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa Agroindústria Tropical-Comunicado Técnico (INFOTECA-E).
Sales, A., & Waughon, T. G. M. (2013). Influência do processamento no teor de compostos bioativos em frutos de murici e cajá. Agrarian, 6(19), 7-15. e-ISSN 1984-2538
Sánchez-Chávez, W., Cortez-Arredondo, J., Solano-Cornejo, M., & Vidaurre-Ruiz, J. (2015). Cinética de degradación térmica de betacianinas, betaxantinas y vitamina C en una bebida a base de jugo de remolacha (Beta vulgaris L.) y miel de abeja. Scientia Agropecuaria, 6(2), 111-118. http://dx.doi.org/10.17268/sci.agropecu.2015.02.03
Santos A. (2013). El nanche Byrsonima crassifolia una alternativa de producción frutícola para el municipio de Actopan, Veracruz. Universidad Veracruzana. 47 p.
Serra, H. M., & Cafaro, T. A. (2007). Ácido ascórbico: desde la química hasta su crucial función protectiva en ojo. Acta bioquímica clínica latinoamericana, 41(4), 525-532. ISSN 0325-2957
Silva FVM, Gibbs PA, Nuñez H, Almonacid S, Simpson R. 2014. Thermal Processes/Pasteurization. Reference Module in Food Science, from Encyclopedia of Food Microbiology. 577-595 p.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Sistema de Información Agroalimentaria y Pesquera (SIAP). http://www.siap.gob.mx/
Teixeira, A. A. (2014). Thermal food preservation techniques (pasteurization, sterilization, canning and blanching). Conventional and advanced food processing technologies, 115-128. https://doi.org/10.1002/9781118406281.ch6
Thakkar, P., Vaghela, B., Patel, A., Modi, H. A., & Prajapati, J. B. (2018). Formulation and shelf life study of a whey-based functional beverage containing orange juice and probiotic organisms. International Food Research Journal, 25(4).
Vallejo-Castillo, V., Muñoz-Mera, J., Pérez-Bustos, M.F. & Rodriguez-Stouvenel, A. (2020). Recovery of antioxidants from papaya (Carica papaya L.) peel and
pulp by microwave-assisted extraction. Revista Mexicana de Ingeniería Química (2020). 19(1) p 85-89. https://doi.org/10.24275/rmiq/Alim593.
Verardo, V., Glicerina, V., Cocci, E., Frenich, A. G., Romani, S., & Caboni, M. F. (2018). Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. LWT, 87, 217-224. https://doi.org/10.1016/j.lwt.2017.08.063
Zanoni, B., Pagliarini, E., Galli, A., & Laureati, M. (2005). Shelf-life prediction of fresh blood orange juice. Journal of Food Engineering, 70(4), 512-517. https://doi.org/10.1016/j.jfoodeng.2004.10.019
How to Cite
Urquieta-Herrero, M., Cornejo-Mazón, M., Gutiérrez-López, G., & García-Pinilla, S. (2021). Effect of two pasteurization methods on the content of bioactive compounds and antioxidant capacity of nance (Byrsonima crassifolia) pulp and their kinetics of loss during refrigerated storage. Revista Mexicana De Ingeniería Química, 20(2), 663-678. https://doi.org/10.24275/rmiq/Alim2222
Food Engineering

Most read articles by the same author(s)

1 2 3 > >>