Interest of cellular differentiation in the production of vincristine and vinblastine in suspension cultures of Catharanthus roseus (L.) G Don.

  • D.A. Zavala-Ortiz
  • M.J. Martínez-Montero
  • E. Guedon
  • A. Marc
  • B. Ebel
  • D.M. Barradas-Dermitz
  • P.M. Hayward-Jones
  • M. Mata-Rosas
  • M.G. Aguilar-Uscanga
Keywords: Catharanthus roseus suspension culture, cell differentiation, bioreactor, vincristine, vinblastine.


Plant cell culture technology, particularly suspension cultures, appears as a convenient tool to industrially produce molecules such as the anticancer molecules vincristine and vinblastine. Cell differentiation is needed for their in vivo synthesis and thus in vitro cultures have usually been considered as limited producing platforms. Several studies have recently detected vincristine and vinblastine in early differentiated calluses and also in suspension cultures. Nevertheless, the degree of cell differentiation has not been addressed, particularly in suspension cultures that could be used as a large-scale producing platform. Therefore, the effect of culture conditions on the production of vincristine and vinblastine, taking into account cytodifferentiation within cell aggregates, has been analyzed for the first time. Culture conditions such as light exposure and plant growth regulator regimes have been shown to affect cell differentiation. Moreover, cell differentiation was observed to be closely related to vincristine and vinblastine titers. Results provide important clues into the comprehension of in vitro culture performance for metabolites production requiring in vivo cell differentiation. They demonstrated the utility of taking into account cell differentiation for the further development of novel advanced processes of differentiated cell suspension cultures for producing valuable molecules, including biological medicines such as vincristine and vinblastine.


Alam, M. M., Naeem, M., Khan, M. M. A., & Uddin, M. (2017). Vincristine and Vinblastine Anticancer Catharanthus Alkaloids: Pharmacological applications and strategies for yield improvement. In: Catharanthus roseus (M. Naeem, T. Aftab, & M. M. A. Khan eds.), Pp. 277–307. Springer International Publishing, Cham.

Ataei-Azimi, azra, Hashemloian, B. D., Ebrahimzadeh, H., & Majd, A. (2018). High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. African Journal of Biotechnology, 7(16), 2834–2839.

Barkat, Md. A., Abul, H., & Rahman, Md. A. (2017). Agricultural, pharmaceutical, and therapeutic interior of Catharanthus roseus (L.) G. Don. In: Catharanthus roseus (M. Naeem, T. Aftab, & M. M. A. Khan eds.) Pp. 71–100. Springer International Publishing, Switzerland.

Bashir, T., Asgher, M., Hussain, F., Bhatti, H. N. (2019). Optimization of process variables for hyper-production of lovastatin from wild type Aspergillus terreus and its efficacy studies. Revista Mexicana de Ingeniería Química, 19(2), 929–939.

Bhatia, S., & Sharma, K. (2015). Technical glitches in micropropagation. In Modern applications of plant biotechnology in pharmaceutical sciences (Bhatia, S. & Sharma, K. eds.) Pp. 393–404. Elsevier, London.

Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: A historical perspective. Plant Science, 161(5), 839–851.

Burlat, V., Oudin, A., Courtois, M., Rideau, M., & St-Pierre, B. (2004). Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. The Plant Journal, 38(1), 131–141.

Crang, R., Lyons-Sobaski, S., & Wise, R. (2018). Plant anatomy: A concept-based approach to the structure of seed plants. Springer International Publishing, Cham.

De Luca, V., & Cutler, A. J. (1987). Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiology, 85(4), 1099–1102.

Deus-Neumann, B., & Zenk, M. (1984). Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica, 50(05), 427–431.

Devillard, C., & Walter, C. (2014). Formation of plant tracheary elements in vitro – a review. New Zealand Journal of Forestry Science, 44(1), 1-14.

Fukuda, H., Ito, M., Sugiyama, M., & Komamine, A. (1994). Mechanisms of the proliferation and differentiation of plant cells in cell culture systems. The International Journal of Developmental Biology, 38(2), 287–299.

Giordano, C., Maleci, L., Agati, G., & Petruccelli, R. (2020). Ficus carica L. leaf anatomy: Trichomes and solid inclusions. Annals of Applied Biology, 176(1), 47–54.

Gupta, M. M., Singh, D. V., Tripathi, A. K., Pandey, R., Verma, R. K., Singh, S., Shasany, A. K., Khanuja, S. P. S. (2005). Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of Catharanthus roseus by high-performance liquid chromatography. Journal of Chromatographic Science, 43(9), 450–453.

Hall, R. D., & Yeoman, M. M. (1987). Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell line selection. Journal of Experimental Botany, 38(8), 1391–1398.

Hoekstra, S. S., Harkes, P. A. A., Verpoorte, R., & Libbenga, K. R. (1990). Effect of auxin on cytodifferentiation and production of quinoline alkaloids in compact globular structures of Cinchona ledgeriana. Plant Cell Reports, 8(10), 571–574.

Iskandar, N. N., & Iriawati, I. (2016). Vinblastine and vincristine production on madagascar periwinkle (Catharanthus roseus (L.) G. Don) callus culture treated with polethylene glycol. Makara Journal of Science, 20(1), 7–16.

Kalidass, C., Mohan, V. R., & Arjunan, D. (2010). Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. (Apocynaceae). Tropical and Subtropical Agroecosystems, (12), 283–288.

Kim, S. W., Song, N. H., Jung, K. H., Kwak, S. S., & Liu, J. R. (1994). High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Reports, 13(6), 319-322.

Kim, S. W., Jung, K., Kwak, S., & Liu, J. (1994). Relationship between cell morphology and indole alkaloid production in suspension cultures of Catharanthus roseus. Plant Cell Reports, 14(1), 23-26.

Knobloch, K.-H., Bast, G., & Berlin, J. (1982). Medium- and light-induced formation of serpentine and anthocyanins in cell suspension cultures of Catharanthus roseus. Phytochemistry, 21(3), 591–594.

Lindsey, K., & Yeoman, M. M. (1983). The Relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. Journal of Experimental Botany, 34(8), 1055–1065.

Liscombe, D. K., & O’Connor, S. E. (2011). A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry, 72(16), 1969–1977.

Mamoucha, S., & Christodoulakis, N. S. (2016). Leaf tissue arrangement, preliminary phytochemical investigation and callus induction from the medicinal hemi-parasite Osyris alba L. International Journal of Pharmacognosy and Phytochemical Research, 8(9), 1437–1443.

Mauseth, J. D. (2014). Botany: An introduction to plant biology. Jones & Bartlett Learning, Burlington.

Mekky, H., Al-Sabahi, J., & Abdel-Kreem, M. F. M. (2018). Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. South African Journal of Botany, 114, 29–31.

Miura, Y., Hirata, K., & Kurano, N. (1987). Isolation of vinblastine in callus culture with differentiated roots of Catharanthus roseus (L). G. Don. Agricultural and Biological Chemistry, 51(2), 611–614.

Möller, R., Ball, R. D., Henderson, A. R., Modzel, G., & Find, J. (2006). Effect of light and activated charcoal on tracheary element differentiation in callus cultures of Pinus Radiata D. Don. Plant Cell, Tissue and Organ Culture, 85(2), 161–171.

Murata, J., & Luca, V. D. (2005). Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus: Mapping biosynthesis of Catharanthus alkaloids. The Plant Journal, 44(4), 581–594.

Naaranlahti, T., Lapinjoki, S., Huhtikangas, A., Toivonen, L., Kurtén, U., Kauppinen, V., & Lounasmaa, M. (1989). Mass spectral evidence of the occurrence of vindoline in heterotrophic cultures of Catharanthus roseus cells. Planta Medica, 55(02), 155–157.

Neumann, D., Krauss, G., Hieke, M., & Gröger, D. (1983). Indole alkaloid formation and storage in cell suspension cultures of Catharanthus roseus. Planta Medica, 48(05), 20–23.

Nisar, K., Abdullah, R., Kaleem, A., Iqtedar, M. (2019). Application of response surface methodology for statistical optimization of carboxymethylcellulase by Thermomyces dupontii TK-19 using submerged fermentation. Revista Mexicana de Ingeniería Química, 19(2), 903–911.

Pan, Q., Chen, Y., Wang, Q., Yuan, F., Xing, S., Tian, Y., Tang, K. (2010). Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regulation, 60(2), 133–141.

Patil, R. A., & Roberts, S. C. (2013). Implications of cellular heterogeneity on plant cell culture performance. In: Biotechnology for Medicinal Plants (S. Chandra, H. Lata, & A. Varma eds.) Pp. 207–239. Springer Berlin Heidelberg, Berlin.

Pratiwi, D. R., Sumaryono, Sari, P. T., & Ratnadewi, D. (2018). Cinchona cells performance in in vitro culture: Quinine alkaloid production with application of different elicitors. IOP Conference Series: Earth and Environmental Science, 185, 1-9.

Qu, Y., Safonova, O., & De Luca, V. (2019). Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. The Plant Journal, 97(2), 257–266.

Roberts, A. W., & Haigler, C. H. (1994). Cell expansion and tracheary element differentiation are regulated by extracellular pH in mesophyll cultures of Zinnia elegans L. Plant Physiology, 105(2), 699–706.

Savidge, R. A. (1983). The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. The Histochemical Journal, 15(5), 447–466.

Scott, A. I., Mizukami, H., Hirata, T., & Lee, S. L. (1980). Formation of catharanthine, akuammicine and vindoline in Catharanthus roseus suspension cells. Phytochemistry, 19(3), 488–489.

Srivastava, N. K., & Srivastava, A. K. (2007). Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica, 45(1), 156–160.

St-Pierre, B., Vazquez-Flota, F. A., & De Luca, V. (1999). Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. The Plant Cell, 11(5), 887–900.

Taha, H., Shams, K. S., Nazif, N. M., & Seif-El-Nasr, M. (2014). In vitro studies on egyptian Catharanthus roseus (L.) G. Don V: Impact of stirred reactor physical factors on achievement of cells proliferation and vincristine and vinblastine accumulation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2), 330–330.

Tikhomiroff, C., & Jolicoeur, M. (2002). Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. Journal of Chromatography A, 955(1), 87–93.

Tyler, R. T., Kurz, W. G. W., & Panchuk, B. D. (1986). Photoautotrophic cell suspension cultures of periwinkle (Catharanthus roseus (L.) G. Don): Transition from heterotrophic to photoautotrophic growth. Plant Cell Reports, 5(3), 195–198.

Verpoorte, R., van der Heijden, R., Schripsema, J., Hoge, J. H. C., & Ten Hoopen, H. J. G. (1993). Plant cell biotechnology for the production of alkaloids: Present status and prospects. Journal of Natural Products, 56(2), 186–207.

Yoder, L. R., & Mahlberg, P. G. (1976). Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae). American Journal of Botany, 63(9), 1167–1173.

Yu, R., Zhu, J., Wang, M., & Wen, W. (2015). Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacognosy Reviews, 9(17), 24-28.

Zavala-Ortiz, D. A., Ebel, B., Guedon, E., Marc, A., Barradas-Dermitz, D. M., Hayward-Jones, P. M., & Aguilar-Uscanga, M. G. (2020). In situ cell differentiation monitoring of Catharanthus roseus suspension culture processes by NIR spectroscopy. Bioprocess and Biosystems Engineering, 43, 747–752.

Zhang, W., Yang, J., Zi, J., Zhu, J., Song, L., & Yu, R. (2015). Effects of adding vindoline and MeJA on production of vincristine and vinblastine, and transcription of their biosynthetic genes in the cultured CMCs of Catharanthus roseus. Natural Product Communications, 10(12), 2095-2096.

How to Cite
Zavala-Ortiz, D., Martínez-Montero, M., Guedon, E., Marc, A., Ebel, B., Barradas-Dermitz, D., Hayward-Jones, P., Mata-Rosas, M., & Aguilar-Uscanga, M. (2021). Interest of cellular differentiation in the production of vincristine and vinblastine in suspension cultures of Catharanthus roseus (L.) G Don. Revista Mexicana De Ingeniería Química, 20(2), 807-821.