EFFECT OF CARBON SOURCE ON TANNASE PRODUCTION BY TWO STRAINS OF Aspergillus niger

  • R. Belmares-Cerda Departamento de Investigación en Alimentos. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila.
  • M. L. Reyes-Vega, Departamento de Investigación en Alimentos. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila.
  • J. C. Contreras-Esquivel Departamento de Investigación en Alimentos. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila.
  • R. Rodríguez-Herrera Departamento de Investigación en Alimentos. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila.
  • C. N. Aguilar Departamento de Investigación en Alimentos. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila.
Keywords: tannase, Aspergillus strains, tannins

Abstract

In the present study, tannase production of two Aspergillus niger strains was evaluated. Previously, both strains were isolated from soils and plants of the semiarid region of Coahuila, Mexico. Tannase production kinetics were carried out in submerged cultures of Aspergillus niger PSH and GH1. Extracellular and intracellular activities were assayed using the methanolic rhodanine method. Culture conditions were: inoculation level, 3 x 10 7 spores per reactor; 30 mL of culture medium; temperature, 30oC; incubation time, 48h; initial pH, 5.5; several carbon sources were used: glucose, gallic acid, tannic acid, catechin, and infusions from sorghum, pecan peels and creosote bush. A carbon/nitrogen ratio of 10 was used. Results obtained in this study demonstrated that the Aspergillus niger GH1 strain produced higher extracellular and intracellular tannase activity than Aspergillus niger PSH in pure substrates and in infusions.. However, under certain culture conditions, A. niger PSH produced the highest tannase activity, i.e., with infusions of creosote bush.

 

References

Aguilar, C.N. (2000). Patrones de inducción y represión en la síntesis de la enzima tanasa de Aspergillus niger Aa-20 en cultivos en medio líquido y sólido. Tesis de doctorado. Universidad Autónoma Metropolitana, Iztapalapa, México, D.F.

Aguilar, C.N. y Gutiérrez-Sánchez, G. (2001). Sources, properties, and potential uses of tannin acyl hydrolase (3.1.1.20). Food Science and Technology International 7, 373-382.

Aguilar, C.N., Augur, C., Favela-Torres, E. y Viniegra-González, G. (2001a). Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochemistry 36, 565-570.

Aguilar, C.N., Augur, C., Favela-Torres, E. y Viniegra-González, G. (2001b). Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentations: influence of glucose and tannic acid. Journal of Industrial Microbiology and Biotechnology 26, 296-302.

Bajpai, B. y Patil, S. (1997). Induction of tannin acyl hydrolase (EC, 3.1.1.20) activity in some members of fungi imperfecti. Enzyme and Microbial Technology 20, 612-614.

Compton, L.P. (1990). Agronomía del Sorgo. Instituto Internacional para la Investigación en cultivos para los trópicos semiáridos (ICRISAT), Patancheru, Andhra Pradesh, India.

Cruz-Hernández, M., Rodríguez, R., Aguilar, C.N., Contreras-Esquivel, J.C. y Lara, F. (2001). Aislamiento y caracterización morfológica de cepas microbianas degradadotas de taninos. Memorias del XXII Encuentro Nacional de la AMIDIQ 71-72.

Cruz-Hernández, M. (2002). Aislamiento y caracterización de cepas fúngicas degradadoras de taninos. Tesis de licenciatura. Facultad de Ciencias Químicas. Universidad Autónoma de Coahuila. México.

Deschamps, A.M., Mahoudeau, G., Leulliette, L. y Lebeault, J.M. (1980). Isolation and identification of bark decaying and utilizing bacteria of various origins. Revue d’Ecologie et de Biologie du Sol 17, 577- 581.

Kar, B., Banerjee, R., y Bhattacharyya, B. C. (1999). Microbial production of gallic acid by modified solid state fermentation. Journal of Industrial Microbiology & Biotechnology 23, 173-177.

Kar, B. y Banerjee, R. (2000). Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. Journal of Industrial Microbiology & Biotechnology 25, 29-38.

Kar, B., Banerjee, R. y Bhattacharyya, B. C. (2002). Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochemistry 37, 1395-1401.

Lekha, P., y Lonsane, B. (1994). Comparative titres, location and properties of tanin acyl hidrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochemistry 29, 497-503.

Lekha, P. K. y Lonsane, B.K. (1997). Tannin acyl hydrolase: State of the art. Advances in Applied Microbiology 44, 215-260. Sharma, S., Bhat, T.K. y Dawra, R. (2000). A
spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry 279, 85-89.

Waterman, P.G. y Mole, S, (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publications. Oxford, Reino Unido.

Zeida, M., Weiser, M., Yoshida, T., Sugio, T. y Nagasama, T. (1998). Purification and characterization of gallic acid esterase from Pantoea agglomerans T71. Applied and Environmental Microbiology 64, 4743- 4747.
Published
2020-12-03
How to Cite
Belmares-Cerda, R., L. Reyes-Vega, M., C. Contreras-Esquivel, J., Rodríguez-Herrera, R., & N. Aguilar, C. (2020). EFFECT OF CARBON SOURCE ON TANNASE PRODUCTION BY TWO STRAINS OF Aspergillus niger. Revista Mexicana De Ingeniería Química, 2(2), 95-100. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2259