CHARACTERIZATION OF A RESIDUE WITH HIGH ALUMINUM CONTENT

  • R. Contreras-Bustos CIDETEQ S. C., Depto. Tecnología Ambiental
  • J. R. Rosas-Cedillo Depto. I. P. H. Universidad Autónoma Metropolitana- Iztapalapa
  • A. J. Ruiz-García CIDETEQ S. C., Depto. Tecnología Ambiental
Keywords: characterization, residue, alumina, gibbsite

Abstract

A residue from the chemical washing process of aluminum was characterized by different techniques in order to envisage different re-utilization schemes. The residue was composed mainly by gibbsite and boehmite in lower amounts. The chemical analyses reported 32.65 % aluminum and sodium and magnesium as impurities (0.38 and 0.17 % respectively). The powder grain size was around 10 μm. Changes in the structure of the residue were found by Differential Thermal Analysis. After heating the residue to 800 O C, γ-Al 2 O 3 was identified. The surface area was 147.40 m 2 /g and the pore diameter was 38 Å. From the characterization data we propose that the residue can be re-utilized in three ways: as an abrasive, in production of aluminum sulfate or in the alumina refining process.

References

Brace, A. W. y Sheasby, P. G. (1979). The Technology of Anodizing Aluminum. Technicopy Limited, Inglaterra. Pp. 49.

Brown, R. J., Keller, R. L. y Lang, CH. F. (1982). Process for the Production of Alumina and Alumina Compound From Wastes. U S Patent & Trade Mark Office, No. 4, 348, 366.

Corma A. (1992). Zeolites in Oil Refining and Petrochemistry, Zeolite Microporous Solids: Synthesis, Structure and Reactivity. Ed. Derouane, E. G., Kluwer Academic Publishers, Países Bajos. Pp. 373-435.

Garrel, R. M. y Christ, Ch. L. (1965). Solutions Minerals and Equilibria. Harper and Row. Países Bajos. Pp. 352-362. Goto, K. S. (1988). Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices, Elsevier. Países Bajos. Pp. 333-376.

Hayes, P. (1985). Process Selection in Extractive Metallurgy. Hayes Publishing Co. Brisbane, Australia. Pp. 9-16.

Karge, H. G. (1992). Modification of Zeolites and New Routes to Ion Exchange. Zeolite Microporous Solids: Synthesis, structure and Reactivity. Derouane, E. G., Kluwer Academic Publishers, Países Bajos. Pp. 273-290.

Kirk-Othmer (1967). Encyclopedia of Chemical Technology 1, 928-990.

Kirk-Othmer (1967). Encyclopedia of Chemical Technology 2, 1-64.

Lippman, A. y Seberik R. F. (1978). Process for the Production of Aluminum Choride and Related Products. US Patent & Trade Mark Office, No. 4,083,923.

Murayama, R. (1992). Teeth Whitener. US Patent & Trade Mark Office, No. 5,122,365.

Pehlke, D. R. (1973). Unit Processes of Extractive Metallurgy. Elsevier Science Publishing Co. Inc. Países Bajos. Pp. 208-211.

Rees, L. V. C., Hampson J. y Brückner, P. (1992). Sorption of Single Gases and Their Binary Mixtures in Zeolites, Zeolite Microporous solids: Synthesis, structure and reactivity. Ed. Derouane E. G., Kluwer Academic Publishers, Países Bajos. Pp. 133-149.

Roobol, N. R. (1997). Industrial Painting Principles and Practices. Hanser Gardner Publications, Cincinnati, OH, EUA. Pp. 106-110.

Smith, J. y James, H. (1993). Papermaking Process. US Patent y Trade Mark Office, No. 5,221,435.

Vedrine, J. C. (1992). General Overview of the Characterization of Zeolites, Zeolite Microporous Solids: Synthesis, structure and reactivity. Ed. Derouane E. G.. Kluwer
Academic Publishers, Países Bajos. Pp. 107-131.
Published
2020-12-03
How to Cite
Contreras-Bustos, R., R. Rosas-Cedillo, J., & J. Ruiz-García, A. (2020). CHARACTERIZATION OF A RESIDUE WITH HIGH ALUMINUM CONTENT. Revista Mexicana De Ingeniería Química, 1(3), 109-116. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2261

Most read articles by the same author(s)