Influence of the cellulose and sulfate ratio on voltage generation in Winogradsky columns

  • C.L. Fernández-Rendón Universidad Autónoma Metropolitana
  • G. Barrera-Escorcia Universidad Autónoma Metropolitana
  • H. Romero-Paredes Universidad Autónoma Metropolitana
  • I. González Universidad Autónoma Metropolitana
Keywords: Sediment microbial fuel cell, Winogradsky column, voltage

Abstract

It is possible to measure the voltage generation in Winogradsky columns by adding an electrical circuit with an anode (buried in sediment) and a cathode (submerged in water). The effect of cellulose/sulfate ratio on voltage generation in sediment columns has not been systematically investigated. Therefore, the aim of this work is the optimization by factorial design the cellulose/sulfate ratio to improve voltage generation in Winogradsky columns. Voltage was generated under different cellulose/sulfate ratios, from 0.08 to 2.57. The voltage in each Winogradsky columns was recorded for 45 days. The response surface model identified an optimal cellulose/sulfate ratio of 0.75 that produced voltage between 300 to 400 mV for several days. These devices represents an alternative for renewable energy generation and cellulose waste could be used as a carbon source.

References

Abbasian, F., Lockington, R., Mallavarapu, M. and Naidu, R. (2015). A pyrosequencing-based analysis of microbial diversity governed by ecological conditions in the Winogradsky column. World Journal of Microbiology and Biotechnology 31, 1115–1126. https://doi.org/10.1007/s11274-015-1861-y
Al-Shehri, A.N., Ghanem, K.M. and Al-Garni, S.M. (2013). Statistical Optimization of Medium Components to Enhance Bioelectricity Generation in Microbial Fuel Cell. Arabian Journal for Science and Engineering 38, 21–27. https://doi.org/10.1007/s13369-012-0397-9
Alshehria, A.N.Z., Ghanem, K.M. and Al-Garni, S.M. (2016). Application of a five level central composite design to optimize operating conditions for electricity generation in a microbial fuel cell. Journal of Taibah University for Science 10, 797–804. https://doi.org/10.1016/j.jtusci.2015.01.004
Babcsányi, I., Meite, F. and Imfeld, G. (2017). Biogeochemical gradients and microbial communities in Winogradsky columns established with polluted wetland sediments. FEMS Microbiology Ecology 93, 1–11. https://doi.org/10.1093/femsec/fix089
Bacchetti-DeGregoris, T., Barroeta, B. and Esteve-Nuñez, A. (2015). La columna bioelectrogénica: Una herramienta para introducir conceptos de ecología microbiana y electroquímica en la educación secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 12, 529–535.
Bhande, R., Noori, M.T. and Ghangrekar, M.M. (2019). Performance improvement of sediment microbial fuel cell by enriching the sediment with cellulose: Kinetics of cellulose degradation. Environmental Technology & Innovation 13, 189–196. https://doi.org/10.1016/j.eti.2018.11.003
Bratkova, S., Alexieva, Z., Angelov, A., Nikolova, K., Genova, P., Ivanov, R., Gerginova, M., Peneva, N. and Beschkov, V. (2019). Efficiency of microbial fuel cells based on the sulfate reduction by lactate and glucose. International Journal of Environmental Science and Technology 16, 6145–6156. https://doi.org/10.1007/s13762-019-02223-8
Commault, A.S., Lear, G., Novis, P. and Weld, R.J. (2014). Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell. New Zealand Journal of Botany 52, 48–59. https://doi.org/10.1080/0028825X.2013.870217
Dar, S.A., Kleerebezem, R., Stams, A.J.M., Kuenen, J.G. and Muyzer, G. (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Applied Microbiology and Biotechnology 78, 1045–1055. https://doi.org/10.1007/s00253-008-1391-8
Guitiérrez-Pulido, H. y Vara-Salazar, R. (2012). Análisis y diseño de experimentos. Editorial McGraw-Hill, México.
Lee, D.-J., Liu, X. and Weng, H.-L. (2014). Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresource Technology 156, 14–19. https://doi.org/10.1016/j.biortech.2013.12.129
Liu, L., Chou, T.-Y., Lee, C.-Y., Lee, D.-J., Su, A. and Lai, J.-Y. (2016). Performance of freshwater sediment microbial fuel cells: Consistency. International Journal of Hydrogen Energy 41, 4504–4508. https://doi.org/10.1016/j.ijhydene.2015.07.139
McCartney, D.M. and Oleszkiewicz, J.A. (1993). Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Environment Research 65, 655–664.
Pagaling, E., Strathdee, F., Spears, B.M., Cates, M.E., Allen, R.J. and Free, A. (2014). Community history affects the predictability of microbial ecosystem development. The ISME Journal 8, 19–30. https://doi.org/10.1038/ismej.2013.150
Ren, Z., Steinberg L.M. and Regan, J.M. (2008). Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Science & Technology 58, 617–622. https://doi.org/10.2166/wst.2008.431
Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L. and Logan, B.E. (2009). Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Applied and Environmental Microbiology 75, 3673–3678. https://doi.org/10.1128/AEM.02600-08
Rogan, B., Lemke, M., Levandowsky, M. and Gorrell, T. (2005). Exploring the sulfur nutrient cycle using the Winogradsky column. The American Biology Teacher 67, 348–356. https://doi.org/10.1662/0002-7685(2005)067[0348:ETSNCU]2.0.CO;2
Rundell, E.A., Banta, L.M., Ward, D.V., Watts, C.D., Birren, B. and Esteban, D.J. (2014). 16S rRNA gene survey of microbial communities in Winogradsky columns. PLoS One 9, e104134. https://doi.org/10.1371/journal.pone.0104134
Sajana, T.K., Ghangrekar, M.M. and Mitra, A. (2014). Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresource Technology 155, 84–90. https://doi.org/10.1016/j.biortech.2013.12.094
Singh, K.P. (2020). Interpretation of electrodic potentials associated with complex biogeochemical processes in contaminated aquatic environments. Journal of Applied Geophysics 172, 103912. https://doi.org/10.1016/j.jappgeo.2019.103912
Wang, D.-B., Song, T.-S., Guo T., Zeng, Q. and Xie, J. (2014). Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. International Journal of Hydrogen Energy 39, 13224–13230. https://doi.org/10.1016/j.ijhydene.2014.06.141
Zhao, Q., Li, R., Ji, M. and Ren Z.J. (2016). Organic content influences sediment microbial fuel cell performance and community structure. Bioresource Technology 220, 549–556. https://doi.org/10.1016/j.biortech.2016.09.005
Zhu, D., Wang, D.-B., Song, T.-S., Guo, T., Wei, P., Ouyang, P. and Xie, J. (2016). Enhancement of cellulose degradation in freshwater sediments by a sediment microbial fuel cell. Biotechnology Letters 38, 271–277. https://doi.org/10.1007/s10529-015-1985-z
Published
2021-09-19
How to Cite
Fernández-Rendón, C., Barrera-Escorcia, G., Romero-Paredes, H., & González, I. (2021). Influence of the cellulose and sulfate ratio on voltage generation in Winogradsky columns. Revista Mexicana De Ingeniería Química, 20(3), Bio2292. https://doi.org/10.24275/rmiq/Bio2292